Этот пример готовых узлов представляет полную модель динамики аппарата перенесение постоянному тестовому маневру радиуса. Для получения информации о подобных маневрах см. стандарты SAE J266_199601[4] и ISO 4138:2012[5]. Можно создать собственные версии, устанавливание среды, чтобы протестировать то транспортное средство соответствует конструктивным требованиям при нормальных и экстремальных условиях движения. Используйте этот пример готовых узлов в поездке и обрабатывающих исследованиях, и шасси управляет разработкой, чтобы охарактеризовать регулирование и боковую динамику аппарата.
Можно сконфигурировать пример готовых узлов для разомкнутого контура и тестов с обратной связью:
Разомкнутый контур — Обеспечивает целевую скорость и угол руля, чтобы определить поперечное ускорение, характеристики заноса и держащиеся углы для определенных ускорений и последующих тестовых маневров. Для теста разомкнутого контура, набор блок Reference Generator параметр Maneuver к Increasing Steer
.
С обратной связью — Использование прогнозирующий драйвер, чтобы обеспечить предварительно заданный радиус поворота при различных скоростях для дорожных качеств автомобиля и исследования качества работы обработки. Для теста с обратной связью, набор блок Reference Generator параметр Maneuver к Constant radius
.
Чтобы создать и открыть рабочую копию постоянного примера готовых узлов радиуса, войти
Эта таблица суммирует блоки и подсистемы в примере готовых узлов. Некоторые подсистемы содержат варианты.
Элемент примера готовых узлов | Описание | Варианты |
---|---|---|
Ссылочный блок Generator | Устанавливает параметры, которые конфигурируют маневр и 3D среду визуализации. По умолчанию блок установлен для постоянного маневра радиуса с 3D отключенной средой механизма симуляции. Для минимальных 3D требований к аппаратным средствам среды визуализации смотрите Нереальные Требования Среды симуляции Engine и Ограничения. Чтобы включить 3D визуализацию, на вкладке 3D Engine, выбирают Enabled. | ✓ |
Команды драйвера | Реализует модель драйвера что использование примера готовых узлов, чтобы сгенерировать ускорение, торможение, механизм и регулирование команд. По умолчанию вариантом подсистемы Driver Commands является блок Predictive Driver. | ✓ |
Среда | Ветер реализаций и дорожные силы. | ✓ |
Контроллеры | Контроллеры реализаций для блоков управления двигателем (ЭКЮ), передачи, антиблокировочные тормозные системы (ABS) и активные дифференциалы. | ✓ |
Пассажирское транспортное средство | Реализует:
| ✓ |
Визуализация | Обеспечивает траекторию транспортного средства и ответ драйвера | ✓ |
Чтобы заменить вариант по умолчанию, на вкладке Modeling, в разделе Design, кликают по выпадающему. В разделе General выберите Variant Manager. В Различном менеджере перейдите к варианту, который вы хотите использовать. Щелкните правой кнопкой и выберите Override using this Choice.
Блок Reference Generator устанавливает параметры, которые конфигурируют маневр и 3D среду симуляции. По умолчанию блок установлен для постоянного маневра радиуса с 3D отключенной средой механизма симуляции.
Используйте параметр Maneuver, чтобы задать тип маневра. Можно задать двойное изменение маршрута, развернутый синус, синус с живут, и медленно увеличивающиеся маневры.
Если вы выбираете параметр Use maneuver-specific driver, initial position, and scene, пример готовых узлов устанавливает драйвер, исходное положение и сцену для маневра, который вы задали.
Для получения дополнительной информации смотрите Reference Generator.
Блок Driver Commands реализует модель драйвера что использование примера готовых узлов, чтобы сгенерировать ускорение, торможение, механизм и регулирование команд. По умолчанию, если вы выбираете параметры блоков Reference Generator Use maneuver-specific driver, initial position, and scene, пример готовых узлов выбирает драйвер для маневра, который вы задали.
Установка командного режима транспортного средства | Реализация |
---|---|
| Блок Longitudinal Driver — Продольный отслеживающий скорость контроллер. На основе ссылки и скоростей обратной связи, блок генерирует нормированное ускорение и тормозящие команды, которые могут варьироваться от 0 до 1. Используйте блок, чтобы смоделировать динамический ответ драйвера или сгенерировать команды, необходимые, чтобы отследить продольный ездовой цикл. |
| Блок Predictive Driver — Контроллер, который генерирует нормированное регулирование, ускорение и торможение команд, чтобы отследить продольную скорость и боковое ссылочное смещение. Нормированные команды могут варьироваться между-1 к 1. Диспетчер использует однодорожечное (велосипед) модель для оптимального управления предварительным просмотром одно точки. |
| Реализует систему разомкнутого контура так, чтобы можно было сконфигурировать пример готовых узлов для постоянного или основанного на сигнале регулирования, ускорения, торможения и ввода команд механизма. |
Подсистема Среды генерирует ветер и наземные войска. Пример готовых узлов имеет эти варианты среды.
Среда | Вариант | Описание |
---|---|---|
Оснуйте обратную связь |
| Блок Vehicle Terrain Sensor использования, чтобы реализовать трассировку лучей в 3D среде |
| Реализует постоянное значение трения |
Подсистема Контроллеров генерирует крутящий момент механизма, механизм передачи, тормозное давление и команды дифференциального давления.
Контроллер ECU генерирует команду крутящего момента механизма. Контроллер предотвращает сверхгазование на механизме путем ограничения команды крутящего момента механизма значением, заданным переменной EngRevLim
рабочего пространства модели. По умолчанию значение составляет 7 000 об/мин. Если дифференциальная команда крутящего момента превышает ограниченную команду крутящего момента механизма, ECU устанавливает команду крутящего момента механизма на дифференциальный крутящий момент, которым управляют.
Подсистема контроллера Передачи генерирует команду механизма передачи. Контроллер включает эти варианты.
Вариант | Описание |
---|---|
| Управление передачей разомкнутого контура. Контроллер устанавливает команду механизма на запрос механизма. |
| Реализует управляющий модуль передачи (TCM), который использует Stateflow® логика, чтобы сгенерировать команду механизма на основе ускорения транспортного средства, тормозите команду, скорость колеса, скорость вращения двигателя и запрос механизма. |
| Реализует контроллер весла, который использует ускорение транспортного средства и скорость вращения двигателя, чтобы сгенерировать команду механизма. |
| Реализует управляющий модуль передачи (TCM), который использует логику Stateflow, чтобы сгенерировать команду механизма на основе ускорения транспортного средства, скорости колеса и скорости вращения двигателя. |
Подсистема контроллера Тормоза реализует подсистему Управления Тормозным давлением, чтобы сгенерировать команду тормозного давления. Подсистема Управления Тормозным давлением имеет эти варианты.
Вариант | Описание |
---|---|
| Реализует контроллер обратной связи антиблокировочной тормозной системы (ABS), который переключается между двумя состояниями, чтобы отрегулировать промах колеса. Управление скорострельного оружия минимизирует ошибку между фактическим промахом и желаемым промахом. Для желаемого промаха диспетчер использует значение промаха, в котором кривая mu-промаха достигает пикового значения. Это желаемое значение промаха оптимально для минимального тормозного пути. |
| Управление тормозом разомкнутого контура. Контроллер устанавливает команду тормозного давления на ссылочное тормозное давление на основе команды тормоза. |
| Управление ABS с пятью состояниями, когда вы симулируете маневр.1,2,3 Диспетчер ABS с пятью состояниями использует переключение логики на основе замедления колеса и ускорения транспортного средства, чтобы управлять тормозным давлением в каждом колесе. Рассмотрите использование управления ABS с пятью состояниями, чтобы предотвратить тупик колеса, тормозной путь уменьшения, или обеспечить устойчивость рыскания во время маневра. Параметры ABS по умолчанию приняты за работу на дорогах, которые имеют постоянный содействующий масштабный коэффициент трения 0,6. |
Активная Дифференциальная подсистема Управления генерирует команду дифференциального давления. Чтобы вычислить команду, подсистема имеет эти варианты.
Вариант | Описание |
---|---|
| Реализует контроллер, который генерирует команду дифференциального давления на основе:
|
| Не реализует контроллер. Устанавливает команду дифференциального давления на 0. |
Пассажирская подсистема Транспортного средства имеет механизм, контроллеры и кузов с четырьмя колесами. А именно, транспортное средство содержит эти подсистемы.
Тело, приостановка, подсистема колес | Вариант | Описание |
---|---|---|
PassVeh7DOF |
| Транспортное средство с четырьмя колесами:
|
PassVeh14DOF |
| Транспортное средство с четырьмя колесами.
|
Подсистемы двигателей | Вариант | Описание |
---|---|---|
Сопоставленный Engine |
| Сопоставленный двигатель с искровым зажиганием |
Регулирование, передача, автомобильная трансмиссия и подсистема тормозов | Вариант | Описание | |
---|---|---|---|
Идеал автомобильной трансмиссии фиксированный механизм | Модель Driveline | All Wheel Drive | Сконфигурируйте автомобильную трансмиссию для с приводом на все колеса, с передними ведущими колесами, заднего колеса или заднего колеса активный дифференциальный диск и задайте тип связи крутящего момента. |
| |||
| |||
| |||
Передача |
| Реализует зафиксированную передачу механизма идеала. | |
Тормозите гидравлику | N/A | Реализует эвристический ответ гидравлической системы, когда контроллер применяет команду тормоза к цилиндру. Включает передние и задние коэффициенты смещения колеса. Подсистема преобразует поданное давление в цилиндрическое положение золотника. Чтобы сгенерировать тормозное давление, золотник применяет поток в нисходящем направлении к цилиндрам. |
Когда вы запускаете симуляцию, подсистема Визуализации обеспечивает драйвер, транспортное средство и информацию об ответе. Пример готовых узлов регистрирует сигналы транспортного средства во время маневра, включая регулирование, транспортное средство и скорость вращения двигателя и поперечное ускорение. Можно использовать Инспектора Данных моделирования, чтобы импортировать регистрируемые сигналы и исследовать данные.
Элемент | Описание |
---|---|
Команды драйвера | Команды драйвера:
|
Ответ транспортного средства | Ответ транспортного средства:
|
Держитесь, Скорость, блок Lat Accel Scope |
|
Транспортное средство плоттер XY | Транспортное средство, продольное по сравнению с боковым расстоянием |
Блок ISO 15037-1:2006 | Отобразите сигналы измерения стандарта ISO в Инспекторе Данных моделирования, включая угол руля и крутящий момент, продольный и поперечная скорость и угол заноса |
Если вы включаете 3D визуализацию на вкладке 3D Engine блока Reference Generator путем выбора Enabled, можно просмотреть ответ транспортного средства в AutoVrtlEnv
окно.
Чтобы гладко изменить поля зрения камеры, используйте эти ключевые команды.
Ключ | Поле зрения камеры | |
---|---|---|
1 | Назад оставленный |
|
2 | Назад | |
3 | Обратное право | |
4 | Левый | |
5 | Внутренний | |
6 | Право | |
7 | Передняя сторона оставлена | |
8 | Передняя сторона | |
9 | Переднее право | |
0 | Наверху |
Для дополнительного управления камерой используйте эти ключевые команды.
Ключ | Управление камерой |
---|---|
Вкладка | Циклически повторите представление между всеми транспортными средствами в сцене. |
Колесико прокрутки мыши | Управляйте расстоянием камеры от транспортного средства. |
L | Переключите эффект задержки камеры на или прочь. Когда вы включаете эффект задержки, поле зрения камеры включает:
Эта задержка включает улучшенную визуализацию полного ускорения транспортного средства и вращение. |
F | Переключите свободный режим камеры на или прочь. Когда вы включаете свободный режим камеры, можно использовать мышь, чтобы изменить тангаж и рыскание камеры. Этот режим позволяет вам вращаться вокруг камеры вокруг транспортного средства. |
[1] Pasillas-Lépine, Уильям. "Гибридное моделирование и предельный анализ цикла для класса пятифазовых антиблокировочных алгоритмов тормоза". Системная Динамика транспортного средства 44, № 2 (2006): 173-188.
[2] Джерард, Мэтью, Уильям Пэзиллас-Лепайн, Эдвин Де Ври и Мишель Верхэеджен. "Улучшения пятифазового алгоритма ABS для экспериментальной валидации". Системная Динамика транспортного средства 50, № 10 (2012): 1585-1611.
[3] Bosch, R. "Bosch Автомобильное Руководство". 10-й редактор Варрендэйл, усилитель мощности (УМ): SAE International, 2018.
[4] J266_199601. Установившиеся направленные процедуры контрольного теста для легковых автомобилей и легких грузовиков. Варрендэйл, усилитель мощности (УМ): SAE International, 1996.
[5] ISO 4138:2012. Легковые автомобили — Установившееся круговое ведущее поведение — методы тестирования Разомкнутого контура. Женева: ISO, 2012.
3D Engine | Driver Commands | Reference Generator