Этот пример показывает генерацию кода для приложения классификации логотипов что глубокое обучение использования. Это использует codegen команда, чтобы сгенерировать MEX-функцию, которая выполняет предсказание на SeriesNetwork возразите названному LogoNet.
Необходимый
Этот пример генерирует CUDA® MEX и имеет следующие сторонние требования.
CUDA включил NVIDIA® графический процессор и совместимый драйвер.
Дополнительный
Для сборок неMEX, таких как статические, динамические библиотеки или исполняемые файлы, этот пример имеет следующие дополнительные требования.
Инструментарий NVIDIA.
Библиотека NVIDIA cuDNN.
Переменные окружения для компиляторов и библиотек. Для получения дополнительной информации смотрите Стороннее Оборудование (GPU Coder) и Подготовка Необходимых как условие продуктов (GPU Coder).
Используйте coder.checkGpuInstall Функция (GPU Coder), чтобы проверить, что компиляторы и библиотеки, необходимые для выполнения этого примера, настраиваются правильно.
envCfg = coder.gpuEnvConfig('host'); envCfg.DeepLibTarget = 'cudnn'; envCfg.DeepCodegen = 1; envCfg.Quiet = 1; coder.checkGpuInstall(envCfg);
Логотипы помогают пользователям в идентификации бренда и распознавании. Многие компании включают свои логотипы в рекламу, материалы документации и продвижения. Сеть распознавания логотипа (logonet) была разработана в MATLAB® и может распознать 32 логотипа при различных условиях освещения и движениях камеры. Поскольку эта сеть фокусируется только на распознавании, можно использовать его в приложениях, где локализация не требуется.
Сеть обучена в MATLAB при помощи обучающих данных, который содержит приблизительно 200 изображений для каждого логотипа. Поскольку количество изображений для того, чтобы обучить сеть мало, увеличение данных увеличивает число обучающих выборок. Используются четыре типа увеличения данных: контрастная нормализация, Гауссова размытость, случайное зеркальное отражение и сдвиг. Это увеличение данных помогает в распознавании логотипов в изображениях, полученных различными условиями освещения и движениями камеры. Входной размер для logonet 227 227 3. Стандартный SGDM обучается при помощи скорости обучения 0,0001 в течение 40 эпох с мини-пакетным размером 45. trainLogonet.m скрипт помощника демонстрирует увеличение данных на демонстрационном изображении, архитектуре logonet и опциях обучения.
Загрузите logonet сеть и сохраните ее в LogoNet.mat.
getLogonet();
Сохраненная сеть содержит 22 слоя включая свертку, полностью соединенную, и классификация выходные слои.
load('LogoNet.mat');
convnetconvnet = SeriesNetwork with properties:
Layers: [22×1 nnet.cnn.layer.Layer]
InputNames: {'imageinput'}
OutputNames: {'classoutput'}
Чтобы просмотреть сетевую архитектуру, используйте analyzeNetwork функция.
analyzeNetwork(convnet)
logonet_predict Функция точки входаlogonet_predict.m функция точки входа берет вход изображений и выполняет предсказание на изображении с помощью нейронной сети для глубокого обучения, сохраненной в LogoNet.mat файл. Функция загружает сетевой объект от LogoNet.mat в персистентную переменную logonet и повторные использования персистентная переменная на последующих вызовах предсказания.
type('logonet_predict.m')function out = logonet_predict(in)
%#codegen
% Copyright 2017-2020 The MathWorks, Inc.
persistent logonet;
if isempty(logonet)
logonet = coder.loadDeepLearningNetwork('LogoNet.mat','logonet');
end
out = logonet.predict(in);
end
logonet_predict ФункцияСоздайте объект настройки графического процессора для цели MEX и установите выходной язык на C++. Используйте coder.DeepLearningConfig (GPU Coder) функция, чтобы создать CuDNN объект настройки глубокого обучения и присвоение это к DeepLearningConfig свойство объекта настройки графического процессора кода. Чтобы сгенерировать MEX CUDA, используйте codegen команда и задает вход, чтобы иметь размер [227,227,3]. Это значение соответствует входному размеру слоя logonet сети.
cfg = coder.gpuConfig('mex'); cfg.TargetLang = 'C++'; cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn'); codegen -config cfg logonet_predict -args {ones(227,227,3,'uint8')} -report
Code generation successful: View report
Загрузите входное изображение. Вызовите logonet_predict_mex на входном изображении.
im = imread('test.png');
imshow(im);
im = imresize(im, [227,227]); predict_scores = logonet_predict_mex(im);
Сопоставьте лучшие пять баллов предсказания со словами в словаре Wordnet synset (логотипы).
synsetOut = {'adidas', 'aldi', 'apple', 'becks', 'bmw', 'carlsberg', ...
'chimay', 'cocacola', 'corona', 'dhl', 'erdinger', 'esso', 'fedex',...
'ferrari', 'ford', 'fosters', 'google', 'guinness', 'heineken', 'hp',...
'milka', 'nvidia', 'paulaner', 'pepsi', 'rittersport', 'shell',...
'singha', 'starbucks', 'stellaartois', 'texaco', 'tsingtao', 'ups'};
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
top5labels = synsetOut(indx(1:5));Отобразите лучшие пять меток классификации.
outputImage = zeros(227,400,3, 'uint8'); for k = 1:3 outputImage(:,174:end,k) = im(:,:,k); end scol = 1; srow = 20; for k = 1:5 outputImage = insertText(outputImage, [scol, srow],... [top5labels{k},' ',num2str(scores(k),'%2.2f'),'%'],... 'TextColor', 'w','FontSize',15, 'BoxColor', 'black'); srow = srow + 20; end imshow(outputImage);

Очистите статический сетевой объект, который загрузился в памяти.
clear mex;