Симулируйте демонстрационные пути к диффузии скачка Мертона Эйлеровым приближением
[ симулирует Paths,Times,Z,N] = simByEuler(MDL,NPeriods)NTrials демонстрационные пути NVars коррелированые переменные состояния управляются NBrowns Источники броуновского движения риска и NJumps соедините Пуассоновские процессы, представляющие прибытие важных событий по NPeriods последовательные периоды наблюдения. Симуляция аппроксимирует непрерывное время диффузионный процесс скачка Мертона Эйлеровым подходом.
Эта функция симулирует любой SDE с векторным знаком следующей формы:
Здесь:
Xt является NVars- 1 вектор состояния переменных процесса.
B (t, X t) является NVars- NVars матрица обобщенных ожидаемых мгновенных норм прибыли.
D(t,Xt) NVars- NVars диагональная матрица, в которой каждым элементом по основной диагонали является соответствующий элемент вектора состояния.
V(t,Xt) NVars- NVars матрица мгновенных уровней энергозависимости.
dW t является NBrowns- 1 Вектор броуновского движения.
Y(t,Xt,Nt) NVars- NJumps функция размера скачка с матричным знаком.
dN t является NJumps- 1 подсчет вектора процесса.
simByEuler симулирует NTrials демонстрационные пути NVars коррелированые переменные состояния управляются NBrowns Источники броуновского движения риска по NPeriods последовательные периоды наблюдения, с помощью Эйлерового подхода, чтобы аппроксимировать стохастические процессы непрерывного времени.
Этот механизм симуляции обеспечивает приближение дискретного времени базового обобщенного процесса непрерывного времени. Симуляция выведена непосредственно из стохастического дифференциального уравнения движения. Таким образом процесс дискретного времени приближается к истинному процессу непрерывного времени только как к DeltaTimes нуль подходов.
[1] Deelstra, Гризельда и Фредди Делбэен. “Сходимость Дискретизированных, Стохастических (Процентная ставка) Процессы со Стохастическим Термином Дрейфа”. Прикладные Стохастические Модели и Анализ данных. 14, № 1, 1998, стр 77–84.
[2] Higham, Десмонд и Ксуеронг Мао. “Сходимость симуляций Монте-Карло, Включающих Возвращающийся среднее значение Процесс Квадратного корня”. Журнал Вычислительных Финансов 8, № 3, (2005): 35–61.
[3] Господь, Роджер, Реммерт Коеккоек и Дик Ван Дейк. “Сравнение Смещенных Схем Симуляции Стохастических Моделей Энергозависимости”. Количественные Финансы 10, № 2 (февраль 2010): 177–94.
bates | merton | simBySolution