Дискретное время или непрерывное время синхронная машина ST2C статическая система возбуждения с автоматическим регулятором напряжения
Simscape / Электрический / Управление / Управление SM
Блок SM ST2C реализует синхронную машину тип ST2C статическая системная модель возбуждения в соответствии с IEEE 421.5-2016[1].
Используйте этот блок, чтобы смоделировать управление и регулирование полевого напряжения синхронной машины.
Можно переключиться между непрерывными и дискретными реализациями блока при помощи параметра Sample time (-1 for inherited). Чтобы сконфигурировать интегратор в течение непрерывного времени, установите свойство Sample time (-1 for inherited) на 0
. Чтобы сконфигурировать интегратор в течение дискретного времени, установите свойство Sample time (-1 for inherited) на положительное, ненулевое значение, или на -1
наследовать шаг расчета от восходящего блока.
Блок SM ST2C включает четыре главных компонента:
Текущий Компенсатор изменяет измеренное терминальное напряжение в зависимости от терминального тока.
Преобразователь Измерения Напряжения симулирует динамику терминального преобразователя напряжения с помощью фильтра lowpass.
Компонент Элементов управления Возбуждения сравнивает преобразователь напряжения выход с терминальной ссылкой напряжения, чтобы произвести ошибку напряжения. Эта ошибка напряжения затем передается через регулятор напряжения, чтобы произвести полевое напряжение.
Модели Power Source источник питания для управляемого выпрямителя, когда это независимо от терминального напряжения.
Эта схема показывает полную структуру системной модели возбуждения ST2C:
В схеме:
VT и IT являются измеренным терминальным напряжением и текущий из синхронной машины.
VC1 является компенсированным текущим образом терминальным напряжением.
VC является отфильтрованным, компенсированным текущим образом терминальным напряжением.
VREF является ссылочным терминальным напряжением.
VS является напряжением стабилизатора энергосистемы.
VB является полевым напряжением возбудителя.
EFD и IFD являются полевым напряжением и текущий, соответственно.
Следующие разделы описывают каждую из больших частей блока подробно.
Текущий компенсатор моделируется как:
где:
RC является сопротивлением компенсации загрузки.
XC является реактивным сопротивлением компенсации загрузки.
Преобразователь измерения напряжения реализован как блок Low-Pass Filter с постоянной времени TR. Обратитесь к документации для блока Low-Pass Filter для дискретных и непрерывных реализаций.
Эта схема иллюстрирует полную структуру элементов управления возбуждения:
В схеме:
Подсистема Логики Точки Суммирования моделирует входное местоположение точки суммирования для ограничителя перевозбуждения (OEL), ограничителя недовозбуждения (UEL), статора текущего ограничителя (SCL) и селектора выключателя питания (V_S) напряжения. Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.
Подсистема Логики Поглощения моделирует входное местоположение точки поглощения для OEL, UEL и напряжений SCL. Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.
Подсистема PI моделирует ПИ-контроллер эти функции как структура управления для автоматического регулятора напряжения и позволяет представление модификации оборудования с современным цифровым контроллером. Минимальными и максимальными антизаключительными пределами насыщения для блока является VPImin и VPImax, соответственно.
Блок Low-Pass Filter моделирует главную динамику регулятора напряжения. Здесь, KA является усилением регулятора, и TA является главной постоянной времени регулятора. Минимальными и максимальными антизаключительными пределами насыщения для блока является VRmin и VRmax, соответственно.
Блок Filtered Derivative моделирует путь к обратной связи уровня для стабилизации системы возбуждения. Здесь, KF и TF являются усилением и постоянной времени этой системы, соответственно. Обратитесь к документации для блока Filtered Derivative для точных дискретных и непрерывных реализаций.
Блок Integrator управляет возбудителем выход через управляемое насыщение. Параметр EFDmax представляет предел на напряжении возбудителя. Постоянная времени TE сопоставлена с индуктивностью обмоток управления.
Можно использовать различное поле текущие ограничители, чтобы изменить выход регулятора напряжения под небезопасными условиями работы:
Используйте ограничитель перевозбуждения, чтобы предотвратить перегрев обмотки возбуждения из-за чрезмерной полевой текущей потребности.
Используйте ограничитель недовозбуждения, чтобы повысить полевое возбуждение, когда это слишком низко, который рискует десинхронизацией.
Используйте статор текущий ограничитель, чтобы предотвратить перегрев обмоток статора из-за сверхтоков.
Присоедините выход любого из этих ограничителей в одной из этих точек:
Точка суммирования как часть обратной связи автоматического регулятора напряжения (AVR)
Точка поглощения, чтобы заменить обычное поведение AVR
Если вы используете статор текущий ограничитель в точке суммирования, используйте один вход VSCLsum. Если вы используете статор текущий ограничитель в точке поглощения, используйте и вход перевозбуждения, VSCLoel, и вход недовозбуждения, VSCLuel.
Некоторые статические системы используют и текущие источники и источники напряжения, чтобы сгенерировать источник питания.
Эта схема показывает модель источника питания возбудителя, использующего комбинацию фазовращателя терминального напряжения, VT, и терминального тока, IT:
[1] Методические рекомендации IEEE для системных моделей возбуждения для исследований устойчивости энергосистемы. Станд. IEEE 421.5-2016. Пискатауэй, NJ: IEEE-SA, 2016.