Дискретное время или непрерывное время синхронная машина ST4C статическая система возбуждения с автоматическим регулятором напряжения
Simscape / Электрический / Управление / Управление SM
Блок SM ST4C реализует синхронную машину тип ST4C статическая системная модель возбуждения в соответствии с IEEE 421.5-2016[1].
Используйте этот блок, чтобы смоделировать управление и регулирование полевого напряжения синхронной машины.
Можно переключиться между непрерывными и дискретными реализациями блока при помощи параметра Sample time (-1 for inherited). Чтобы сконфигурировать интегратор в течение непрерывного времени, установите свойство Sample time (-1 for inherited) на 0
. Чтобы сконфигурировать интегратор в течение дискретного времени, установите свойство Sample time (-1 for inherited) на положительное, ненулевое значение, или на -1
наследовать шаг расчета от восходящего блока.
Блок SM ST4C включает четыре главных компонента:
Текущий Компенсатор изменяет измеренное терминальное напряжение в зависимости от терминального тока.
Преобразователь Измерения Напряжения симулирует динамику терминального преобразователя напряжения с помощью фильтра lowpass.
Компонент Элементов управления Возбуждения сравнивает преобразователь напряжения выход с терминальной ссылкой напряжения, чтобы произвести ошибку напряжения. Эта ошибка напряжения затем передается через регулятор напряжения, чтобы произвести полевое напряжение.
Модели компонента Источника питания источник питания для управляемого выпрямителя, когда это независимо от терминального напряжения.
Эта схема показывает полную структуру системной модели возбуждения ST4C:
В схеме:
VT и IT являются измеренным терминальным напряжением и текущий из синхронной машины.
VC1 является компенсированным текущим образом терминальным напряжением.
VC является отфильтрованным, компенсированным текущим образом терминальным напряжением.
VREF является ссылочным терминальным напряжением.
VS является напряжением стабилизатора энергосистемы.
VB является полевым напряжением возбудителя.
EFD и IFD являются полевым напряжением и текущий, соответственно.
Следующие разделы описывают каждую из больших частей блока подробно.
Текущий компенсатор моделируется как:
где:
RC является сопротивлением компенсации загрузки.
XC является реактивным сопротивлением компенсации загрузки.
Преобразователь измерения напряжения реализован как блок Low-Pass Filter с постоянной времени TR. Обратитесь к документации для блока Low-Pass Filter для точных дискретных и непрерывных реализаций.
Эта схема иллюстрирует полную структуру элементов управления возбуждения:
В схеме:
Подсистема Логики Точки Суммирования моделирует входное местоположение точки суммирования для ограничителя перевозбуждения (OEL), ограничителя недовозбуждения (UEL), статора текущего ограничителя (SCL) и селектора выключателя питания (V_S) напряжения. Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.
Существует две подсистемы Логики Поглощения. Подсистемы моделируют входное местоположение точки поглощения для OEL, UEL, SCL и напряжений PSS. Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.
Подсистема PI_R моделирует ПИ-контроллер эти функции как структура управления для автоматического регулятора напряжения и позволяет представление модификации оборудования с современным цифровым контроллером. Минимальными и максимальными антизаключительными пределами насыщения для блока является VPImin и VPImax, соответственно.
Подсистема PI_M моделирует ПИ-контроллер и заменяет блок Lead-Lag в SM ST3C. Минимальными и максимальными антизаключительными пределами насыщения для блока является VMmin и VMmax, соответственно.
Внутренний полевой цикл управления напряжения используется, чтобы линеаризовать характеристику управления возбудителем, и это состоит из усилений KM и KG и постоянные времени TM и TG. Минимальными и максимальными антизаключительными пределами насыщения для блока Low-Pass Filter является VAmin и VAmax, соответственно.
Можно использовать различное поле текущие ограничители, чтобы изменить выход регулятора напряжения под небезопасными условиями работы:
Используйте ограничитель перевозбуждения, чтобы предотвратить перегрев обмотки возбуждения из-за чрезмерной полевой текущей потребности.
Используйте ограничитель недовозбуждения, чтобы повысить полевое возбуждение, когда это слишком низко, который рискует десинхронизацией.
Используйте статор текущий ограничитель, чтобы предотвратить перегрев обмоток статора из-за сверхтоков.
Присоедините выход любого из этих ограничителей в одной из этих точек:
Точка суммирования как часть обратной связи автоматического регулятора напряжения (AVR)
Точка поглощения, чтобы заменить обычное поведение AVR
Если вы используете статор текущий ограничитель в точке суммирования, используйте один вход VSCLsum. Если вы используете статор текущий ограничитель в точке поглощения, используйте и вход перевозбуждения, VSCLoel, и вход недовозбуждения, VSCLuel.
Возможно принять различное представление источника питания для управляемого выпрямителя путем выбирания соответствующей опции в параметре Power source selector. Источник питания для управляемого выпрямителя может быть или выведен из терминального напряжения (Position A: power source derived from generator terminal voltage
) или это может быть независимо от терминального напряжения (Position B: power source independent of generator terminal conditions
).
Эта схема показывает модель источника питания возбудителя, использующего комбинацию фазовращателя терминального напряжения, VT, и терминального тока, IT:
[1] Методические рекомендации IEEE для системных моделей возбуждения для исследований устойчивости энергосистемы. Станд. IEEE 421.5-2016. Пискатауэй, NJ: IEEE-SA, 2016.