predictorImportance

Оценки важности предиктора для ансамбля регрессии

Синтаксис

imp = predictorImportance(ens)
[imp,ma] = predictorImportance(ens)

Описание

imp = predictorImportance(ens) вычисляет оценки важности предиктора для ens путем подведения итогов этих оценок по всем слабым ученикам в ансамбле. imp имеет один элемент для каждого входного предиктора в данных, используемых, чтобы обучить этот ансамбль. Высокое значение указывает, что этот предиктор важен для ens.

[imp,ma] = predictorImportance(ens) возвращает P- P матрица с прогнозирующими мерами ассоциации для P предикторы.

Входные параметры

ens

Ансамбль регрессии, созданный fitrensemble, или compact метод.

Выходные аргументы

imp

Вектор-строка с тем же числом элементов как количество предикторов (столбцы) в ens.X. Записи являются оценками важности предиктора с 0 представление наименьшей важности.

ma

P- P матрица прогнозирующих мер ассоциации для P предикторы. Элемент ma(I,J) прогнозирующая мера ассоциации, усредненной по суррогатным разделениям на предикторе J для которого предиктора I оптимальный предиктор разделения. predictorImportance составляет в среднем эту прогнозирующую меру ассоциации по всем деревьям в ансамбле.

Примеры

развернуть все

Оцените важность предиктора для всех переменных предикторов в данных.

Загрузите carsmall набор данных.

load carsmall

Вырастите ансамбль 100 деревьев регрессии для MPG использование Acceleration, Cylinders, Displacement, Horsepower, Model_Year, и Weight как предикторы. Задайте пни как слабых учеников.

X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
t = templateTree('MaxNumSplits',1);
ens = fitrensemble(X,MPG,'Method','LSBoost','Learners',t);

Оцените важность предиктора для всех переменных предикторов.

imp = predictorImportance(ens)
imp = 1×6

    0.0150         0    0.0066    0.1111    0.0437    0.5181

Weight, последний предиктор, оказывает большую часть влияния на пробег. Второй предиктор имеет важность 0, что означает, что количество цилиндров не оказывает влияния на предсказания, сделанные с ens.

Оцените важность предиктора для всех переменных в данных и где ансамбль дерева регрессии содержит суррогатные разделения.

Загрузите carsmall набор данных.

load carsmall

Вырастите ансамбль 100 деревьев регрессии для MPG использование Acceleration, Cylinders, Displacement, Horsepower, Model_Year, и Weight как предикторы. Задайте пни как слабых учеников, и также идентифицируйте суррогатные разделения.

X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
t = templateTree('MaxNumSplits',1,'Surrogate','on');
ens = fitrensemble(X,MPG,'Method','LSBoost','Learners',t);

Оцените важность предиктора и прогнозирующие меры ассоциации для всех переменных предикторов.

[imp,ma] = predictorImportance(ens)
imp = 1×6

    0.2141    0.3798    0.4369    0.6498    0.3728    0.5700

ma = 6×6

    1.0000    0.0098    0.0102    0.0098    0.0033    0.0067
         0    1.0000         0         0         0         0
    0.0056    0.0084    1.0000    0.0078    0.0022    0.0084
    0.3537    0.4769    0.5834    1.0000    0.1612    0.5827
    0.0061    0.0070    0.0063    0.0064    1.0000    0.0056
    0.0154    0.0296    0.0533    0.0447    0.0070    1.0000

Сравнение imp к результатам в Оценочной Важности Предиктора, Horsepower оказывает самое большое влияние на пробег, с Weight оказывание второго по величине влияния.

Больше о

развернуть все

Алгоритмы

Элемент ma(i,j) прогнозирующая мера ассоциации, усредненной по суррогатным разделениям на предикторе j для которого предиктора i оптимальный предиктор разделения. Это среднее значение вычисляется путем подведения итогов положительных значений прогнозирующей меры ассоциации по оптимальным разделениям на предикторе i и суррогат разделяет на предикторе j и деление на общее количество оптимальных разделений на предикторе i, включая разделения, для который прогнозирующая мера ассоциации между предикторами i и j отрицательно.