Класс: GeneralizedLinearMixedModel
Вектор отклика обобщенной линейной модели смешанных эффектов
[ также возвращает биномиальный размер, сопоставленный с каждым элементом y,binomialsize]
= response(glme)y если условное распределение ответа, учитывая случайные эффекты является биномом.
glme — Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel объектОбобщенная линейная модель смешанных эффектов в виде GeneralizedLinearMixedModel объект. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel.
y — Значения откликаЗначения отклика в виде n-by-1 вектор, где n является количеством наблюдений.
Для наблюдения i с предшествующими весами wip и биномиальный размер ni (когда применимый), значения отклика yi может иметь следующие значения.
| Распределение | Разрешенные значения | Примечания |
|---|---|---|
Binomial |
| wip и ni является целочисленными значениями> 0 |
Poisson |
| wip целочисленное значение> 0 |
Gamma | (0,∞) | wip ≥ 0 |
InverseGaussian | (0,∞) | wip ≥ 0 |
normal | (-∞,∞) | wip ≥ 0 |
Можно получить доступ к предшествующему свойству весов wip использование записи через точку. Например, чтобы получить доступ к предшествующему свойству весов для модели glme:
glme.ObservationInfo.Weights
binomialsize — Биномиальный размерБиномиальный размер сопоставлен с каждым элементом y, возвращенный как n-by-1 вектор, где n является количеством наблюдений. response только возвращает binomialsize если условное распределение ответа, учитывая случайные эффекты является биномом. binomialsize пусто для других распределений.
Загрузите выборочные данные.
load mfrЭти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess)
Время вычислений для каждого пакета, в часах (time)
Температура пакета, в градусах Цельсия (temp)
Категориальная переменная, указывающая на поставщика (AB, или C) из химиката, используемого в пакете (supplier)
Количество дефектов в пакете (defects)
Данные также включают time_dev и temp_dev, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess, time_dev, temp_dev, и supplier как предикторы фиксированных эффектов. Включайте термин случайных эффектов для точки пересечения, сгруппированной factory, с учетом качественных различий, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects', таким образом, фиктивные переменные коэффициенты суммируют к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C или B, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой во время пакета .
точка пересечения случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',... 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Извлеките наблюдаемые значения отклика для модели, затем используйте fitted сгенерировать подходящие условные средние значения.
y = response(glme); % Observed response values yfit = fitted(glme); % Fitted response values
Создайте scatterplot наблюдаемых значений отклика по сравнению с подходящими значениями. Добавьте ссылочную линию, чтобы улучшить визуализацию.
figure scatter(yfit,y) xlim([0,12]) ylim([0,12]) refline(1,0) title('Response versus Fitted Values') xlabel('Fitted Values') ylabel('Response')

График показывает положительную корреляцию между подходящими значениями и наблюдаемыми значениями отклика.
[1] Hox, J. Многоуровневый анализ, методы и приложения. Lawrence Erlbaum Associates, Inc., 2002.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.