Тест Jarque-Bera
возвращает тестовое решение для нулевой гипотезы что данные в векторном h = jbtest(x)x прибывает из нормального распределения с неизвестным средним значением и отклонением, с помощью теста Jarque-Bera. Альтернативная гипотеза - то, что это не прибывает из такого распределения. Результат h 1 если тест отклоняет нулевую гипотезу на 5%-м уровне значения и 0 в противном случае.
возвращает тестовое решение на основе p - значение вычислило использование симуляции Монте-Карло стандартная погрешность Монте-Карло имеющая, меньше чем или равная h = jbtest(x,alpha,mctol)mctol.
Тесты Jarque-Bera часто используют распределение хи-квадрат, чтобы оценить критические значения для больших выборок, подчиняясь тесту Lilliefors (см. lillietest) для небольших выборок. jbtest, в отличие от этого, использует таблицу критических значений, вычисленных с помощью симуляции Монте-Карло для объемов выборки меньше чем 2 000 и уровни значения от 0,001 до 0,50. Критические значения для теста вычисляются путем интерполяции в таблицу, использования аналитического приближения хи-квадрата только при экстраполировании для больших объемов выборки.
[1] Jarque, C. M. и А. К. Бера. “Тест для Нормальности Наблюдений и Остаточных значений Регрессии”. Международный Статистический Анализ. Издание 55, № 2, 1987, стр 163–172.
[2] Деб, P. и М. Сефтон. “Распределение Теста множителя Лагранжа Нормальности”. Экономические Буквы. Издание 51, 1996, стр 123–130. Данная статья предложила симуляцию Монте-Карло для определения распределения тестовой статистической величины. Результаты этой функции основаны на независимой симуляции Монте-Карло, не результатах в данной статье.
adtest | kstest | lillietest