Нелинейные доверительные интервалы предсказания регрессии
[ возвращает предсказания, Ypred,delta]
= nlpredci(modelfun,X,beta,R,'Covar',CovB)Ypred, и 95% полуширин доверительного интервала, delta, для нелинейной модели modelfun регрессии во входных значениях X. Прежде, чем вызвать nlpredciИспользование nlinfit соответствовать modelfun и получите предполагаемые коэффициенты, beta, остаточные значения, R, и ковариационная матрица отклонения, CovB.
[ возвращает предсказания, Ypred,delta]
= nlpredci(modelfun,X,beta,R,'Jacobian',J)Ypred, и 95% полуширин доверительного интервала, delta, для нелинейной модели modelfun регрессии во входных значениях X. Прежде, чем вызвать nlpredciИспользование nlinfit соответствовать modelfun и получите предполагаемые коэффициенты, beta, остаточные значения, R, и якобиан, J.
Если вы используете устойчивую опцию с nlinfit, затем необходимо использовать Covar синтаксис, а не Jacobian синтаксис. Ковариационная матрица отклонения, CovB, требуется, чтобы правильно принимать устойчивый подбор кривой во внимание.
Чтобы вычислить доверительные интервалы для комплексных параметров или данных, необходимо разделить проблему в ее действительные и мнимые части. При вызове nlinfit:
Задайте свой вектор параметра beta как конкатенация действительных и мнимых частей исходного вектора параметра.
Конкатенация действительных и мнимых частей вектора отклика Y как один вектор.
Измените свой функциональный modelfun модели принять X и чисто действительный вектор параметра, и возвращает конкатенацию действительных и мнимых частей подходящих значений.
С проблемой, сформулированной этот путь, nlinfit вычисляет действительные оценки, и доверительные интервалы выполнимы.
nlpredci обработки NaN значения в остаточных значениях, R, или якобиан, J, как отсутствующие значения, и игнорирует соответствующие наблюдения.
Если якобиан, J, не имеет полного ранга столбца, затем некоторые параметры модели могут не идентифицироваться. В этом случае, nlpredci попытки создать доверительные интервалы для допускающих оценку предсказаний, и возвращают NaN для тех, которые не являются.
[1] Маршрут, T. P. и В. Х. Думучель. “Одновременные Доверительные интервалы во Множественной регрессии”. Американский Статистик. Издание 48, № 4, 1994, стр 315–321.
[2] Seber, G. A. F. и C. J. Дикий. Нелинейная регрессия. Хобокен, NJ: Wiley-межнаука, 2003.