Обучите самые близкие соседние классификаторы Используя приложение Classification Learner

В этом примере показано, как создать самые близкие соседние классификаторы в приложении Classification Learner.

  1. В MATLAB®, загрузите fisheriris набор данных и задает некоторые переменные из набора данных, чтобы использовать для классификации.

    fishertable = readtable('fisheriris.csv');
    
  2. На вкладке Apps, в группе Machine Learning and Deep Learning, нажимают Classification Learner.

  3. На вкладке Classification Learner, в разделе File, нажимают New Session > From Workspace.

    Classification Learner tab

    В диалоговом окне New Session from Workspace выберите таблицу fishertable из списка Data Set Variable (при необходимости). Заметьте, что приложение выбрало ответ и переменные предикторы на основе их типа данных. Лепесток и длина чашелистика и ширина являются предикторами, и разновидность является ответом, который вы хотите классифицировать. В данном примере не изменяйте выборы.

  4. Нажмите Start Session.

    Приложение создает график рассеивания данных.

  5. Используйте график рассеивания, чтобы заняться расследованиями, какие переменные полезны для предсказания ответа. Чтобы визуализировать распределение разновидностей и измерения, выберите различные варианты в меню Variable on X axis и Variable on Y axis. Наблюдайте, какие переменные разделяют цвета разновидностей наиболее ясно.

  6. Чтобы создать выбор самых близких соседних моделей, на вкладке Classification Learner, на ультраправом из раздела Model Type, кликают по стреле, чтобы расширить список классификаторов, и под Nearest Neighbor Classifiers, нажать All KNNs.

  7. В разделе Training нажмите Train.

    Совет

    Если у вас есть Parallel Computing Toolbox™, можно обучить все модели (All KNNs) одновременно путем нажатия кнопки Use Parallel в разделе Training перед нажатием Train. После того, как вы нажимаете Train, диалоговое окно Opening Parallel Pool открывается и остается открытым, в то время как приложение открывает параллельный пул рабочих. В это время вы не можете взаимодействовать с программным обеспечением. После того, как пул открывается, приложение обучает модели одновременно.

    Classification Learner обучает одну из каждой nonoptimizable самой близкой соседней опции классификации в галерее и подсвечивает лучший счет. Приложение обрисовывает в общих чертах в поле счет Accuracy (Validation) лучшей модели. Classification Learner также отображает матрицу беспорядка валидации для первой модели KNN (Fine KNN).

    Validation confusion matrix of the iris data modeled by a KNN classifier. Blue values indicate correct classifications, and red values indicate incorrect classifications.

    Примечание

    Валидация вводит некоторую случайность в результаты. Ваши результаты проверки допустимости модели могут варьироваться от результатов, показанных в этом примере.

  8. Чтобы просмотреть результаты для модели, выберите модель в панели Models и смотрите панель Current Model Summary. Панель Current Model Summary отображает метрики Training Results, вычисленные на набор валидации.

  9. Для выбранной модели смотрите точность предсказаний в каждом классе. На вкладке Classification Learner, в разделе Plots, кликают по стреле, чтобы открыть галерею, и затем нажать Confusion Matrix (Validation) в группе Validation Results. Просмотрите матрицу истинного класса и предсказанных результатов класса.

  10. Выберите другие модели в панели Models, откройте матрицу беспорядка валидации для каждой из моделей, и затем сравните результаты.

  11. Выберите лучшую модель (лучший счет подсвечен в поле). Чтобы улучшить модель, попробуйте включая различные функции в модели. Смотрите, можно ли улучшить модель путем удаления функций с низкой предсказательной силой.

    На вкладке Classification Learner, в разделе Features, нажимают Feature Selection. В диалоговом окне Feature Selection выберите предикторы, чтобы удалить из модели и нажать OK. В разделе Training нажмите Train, чтобы обучить новую модель с помощью новых опций. Сравните результаты среди классификаторов в панели Models.

  12. Чтобы исследовать функции, чтобы включать или исключить, используйте параллельный график координат. На вкладке Classification Learner, в разделе Plots, кликают по стреле, чтобы открыть галерею и нажать Parallel Coordinates в группе Validation Results.

  13. Выберите лучшую модель в панели Models. Чтобы попытаться улучшить модель далее, попытайтесь изменить настройки. На вкладке Classification Learner, в разделе Model Type, нажимают Advanced. В Усовершенствованном Окне параметров KNN попытайтесь изменить настройки и нажмите OK. Обучите новую модель путем нажатия на Train в разделе Training. Для получения информации о настройках и сильных местах различных самых близких соседних типов модели, смотрите Самые близкие Соседние Классификаторы.

  14. Можно экспортировать полную версию обученной модели к рабочей области. На вкладке Classification Learner, в разделе Export, нажимают Export Model и выбирают Export Model или Export Compact Model. Обратите внимание на то, что любая опция экспортирует полную версию обученной модели, потому что самые близкие соседние модели всегда хранят обучающие данные. См. Модель Классификации Экспорта, чтобы Предсказать Новые Данные.

  15. Чтобы исследовать код на обучение этот классификатор, нажмите Generate Function.

Используйте тот же рабочий процесс, чтобы оценить и сравнить другие типы классификатора, которые можно обучить в Classification Learner.

Попробовать все nonoptimizable предварительные установки модели классификатора, доступные для вашего набора данных:

  1. Кликните по стреле на ультраправом из раздела Model Type, чтобы расширить список классификаторов.

  2. Нажмите All, затем нажмите Train.

    Option selected for training all available classifier types

Чтобы узнать о других типах классификатора, смотрите, Обучают Модели Классификации в Приложении Classification Learner.

Похожие темы