Численно оцените двойной интеграл
q = integral2(fun,xmin,xmax,ymin,ymax)
q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value)
Функция integral2
пытается удовлетворить:
abs(q - Q) <= max(AbsTol,RelTol*abs(q))
q
является вычисленным значением интеграла, и Q
является (неизвестным) точным значением. Абсолютные и относительные допуски обеспечивают способ обменять точность и время вычисления. Обычно, относительный допуск определяет точность интегрирования. Однако, если abs(q)
является достаточно маленьким, абсолютный допуск определяет точность интегрирования. Необходимо обычно задавать и абсолютные и относительные допуски вместе. Метод 'iterated'
может быть более эффективным, когда ваша функция имеет разрывы в области интегрирования. Однако лучшая производительность и точность происходят, когда вы разделяете интеграл в точках разрыва и суммируете результаты нескольких интегрирований.
Когда интеграция по непрямоугольным областям, лучшей производительности и точности происходит, когда ymin
, ymax
, (или оба) являются указателями на функцию. Постарайтесь не устанавливать значения функции подынтегрального выражения обнулять, чтобы интегрироваться по непрямоугольной области. Если необходимо сделать это, задайте метод 'iterated'
.
Используйте метод 'iterated'
, когда ymin
, ymax
, (или оба) будут неограниченными функциями.
При параметризации анонимных функций, знать, что значения параметров сохраняются для жизни указателя на функцию. Например, функциональный fun = @(x,y) x + y + a
использует значение a
в то время, когда fun
был создан. Если вы позже решаете изменить значение a
, необходимо переопределить анонимную функцию с новым значением.
Если вы задаете пределы с одинарной точностью интегрирования, или если fun
возвращает результаты с одинарной точностью, вы можете должны быть задать большие допуски абсолютной и относительной погрешности.
[1] L.F. Шемпин “Векторизовал Адаптивную Квадратуру в MATLAB®”, Журнал Вычислительной и Прикладной математики, 211, 2008, pp.131–140.
[2] L.F. Шемпин, "Программа MATLAB для Квадратуры в 2D". Прикладная математика и Вычисление. Издание 202, Выпуск 1, 2008, стр 266–274.