genfrd

Обобщенная модель данных о частотной характеристике (FRD)

Описание

Обобщенные модели FRD (genfrd) возникают, когда вы комбинируете числовые модели FRD с моделями, содержащими настраиваемые компоненты (Блоки Системы управления). модели genfrd отслеживают то, как настраиваемые блоки взаимодействуют с настраиваемыми компонентами. Для получения дополнительной информации о Блоках Системы управления, см. Обобщенные Модели.

Конструкция

Чтобы создать модель genfrd, используйте series, parallel, lft, или connect или арифметические операторы +, -, *, /, \, и ^, чтобы объединить числовую модель FRD с блоками системы управления.

Можно также преобразовать любую числовую модель LTI или блок sys системы управления к форме genfrd.

frdsys = genfrd(sys,freqs,frequnits) преобразовывает любую статическую образцовую или динамическую систему sys в обобщенную модель FRD. Если sys не является объектом модели frd, genfrd вычисляет частотную характеристику каждой точки частоты в векторном freqs. Частоты freqs находятся в модулях, заданных дополнительным аргументом frequnits. Если frequnits не использован, модулями freqs является 'rad/TimeUnit'.

frdsys = genfrd(sys,freqs,frequnits,timeunits) далее задает единицы измерения времени для преобразования sys к форме genfrd.

Для получения дополнительной информации во время и единицы частоты моделей genfrd, смотрите Свойства.

Входные параметры

sys

Статический объект модели образцовой или динамической системы.

freqs

Вектор точек частоты. Специальные частоты в модуле заданы в frequnits.

frequnits

Единицы частоты модели genfrd, заданной как одно из следующих значений:

  • 'rad/TimeUnit'

  • 'cycles/TimeUnit'

  • 'rad/s'

  • 'Hz'

  • 'kHz'

  • 'MHz'

  • 'GHz'

  • 'rpm'

Значение по умолчанию: 'rad/TimeUnit'

timeunits

Единицы измерения времени модели genfrd, заданной как одно из следующих значений:

  • 'nanoseconds'

  • 'microseconds'

  • 'milliseconds'

  • 'seconds'

  • 'minutes'

  • 'hours'

  • 'days'

  • 'weeks'

  • 'months'

  • 'years'

Значение по умолчанию: 'seconds'

Свойства

Blocks

Структура, содержащая блоки системы управления, включенные в обобщенную модель LTI или обобщенную матрицу. Имена полей Blocks являются свойством Name каждого блока системы управления.

Можно изменить некоторые атрибуты этих блоков системы управления с помощью записи через точку. Например, если обобщенная модель LTI или обобщенный матричный M содержат настраиваемый параметр realp a, можно изменить текущее значение использования a:

M.Blocks.a.Value = -1;

Frequency

Точки частоты данных о частотной характеристике. Задайте значения Frequency в модулях, заданных свойством FrequencyUnit.

FrequencyUnit

Единицы частоты модели.

FrequencyUnit задает модули вектора частоты в свойстве Frequency. Установите FrequencyUnit на одно из следующих значений:

  • 'rad/TimeUnit'

  • 'cycles/TimeUnit'

  • 'rad/s'

  • 'Hz'

  • 'kHz'

  • 'MHz'

  • 'GHz'

  • 'rpm'

Модули 'rad/TimeUnit' и 'cycles/TimeUnit' относительно единиц измерения времени, заданных в свойстве TimeUnit.

Изменение этого свойства изменяет полное поведение системы. Используйте chgFreqUnit, чтобы преобразовать между единицами частоты, не изменяя поведение системы.

Значение по умолчанию: 'rad/TimeUnit'

InputDelay

Введите задержку каждого входного канала, заданного как скалярное значение или числовой вектор. Для непрерывно-разовых систем задайте входные задержки единицы измерения времени, сохраненной в свойстве TimeUnit. Для систем дискретного времени задайте входные задержки целочисленных множителей шага расчета Ts. Например, InputDelay = 3 означает задержку трех шагов расчета.

Для системы с входными параметрами Nu, набор InputDelay к Nu-by-1 вектор. Каждая запись этого вектора является численным значением, которое представляет входную задержку соответствующего входного канала.

Можно также установить InputDelay на скалярное значение применять ту же задержку со всеми каналами.

Значение по умолчанию: 0

OutputDelay

Выведите задержки. OutputDelay является числовым вектором, задающим задержку каждого выходного канала. Для непрерывно-разовых систем задайте выходные задержки единицы измерения времени, сохраненной в свойстве TimeUnit. Для систем дискретного времени задайте выходные задержки целочисленных множителей шага расчета Ts. Например, OutputDelay = 3 означает задержку трех периодов выборки.

Для системы с Ny выходные параметры, набор OutputDelay к Ny-by-1 вектор, где каждая запись является численным значением, представляющим выходную задержку соответствующего выходного канала. Можно также установить OutputDelay на скалярное значение применять ту же задержку со всеми каналами.

Значение по умолчанию: 0 для всех выходных каналов

Ts

'SampleTime' . Для непрерывно-разовых моделей, Ts = 0. Для моделей дискретного времени Ts является положительной скалярной величиной, представляющей период выборки. Это значение выражается в модуле, заданном свойством TimeUnit модели. Чтобы обозначить модель дискретного времени с незаданным шагом расчета, установите Ts = -1.

Изменение этого свойства не дискретизирует или передискретизирует модель.

Значение по умолчанию: 0 (непрерывное время)

TimeUnit

Модули для переменной времени, шаг расчета Ts и любые задержки модели, заданной как одно из следующих значений:

  • 'nanoseconds'

  • 'microseconds'

  • 'milliseconds'

  • 'seconds'

  • 'minutes'

  • 'hours'

  • 'days'

  • 'weeks'

  • 'months'

  • 'years'

Изменение этого свойства не имеет никакого эффекта на другие свойства, и поэтому изменяет полное поведение системы. Используйте chgTimeUnit, чтобы преобразовать между единицами измерения времени, не изменяя поведение системы.

Значение по умолчанию: 'seconds'

InputName

Введите названия канала, заданные как одно из следующего:

  • Вектор символов — Для моделей одно входа, например, 'controls'.

  • Массив ячеек из символьных векторов Модели мультивхода For.

Также используйте автоматическое векторное расширение, чтобы присвоить входные имена для мультивходных моделей. Например, если sys является 2D входной моделью, введите:

sys.InputName = 'controls';

Входные имена автоматически расширяются до {'controls(1)';'controls(2)'}.

Можно использовать краткое обозначение u, чтобы относиться к свойству InputName. Например, sys.u эквивалентен sys.InputName.

Входные названия канала имеют несколько использования, включая:

  • Идентификация каналов на образцовом отображении и графиках

  • Извлечение подсистем систем MIMO

  • Определение точек контакта, когда взаимосвязанные модели

Значение по умолчанию: '' для всех входных каналов

InputUnit

Введите модули канала, заданные как одно из следующего:

  • Вектор символов — Для моделей одно входа, например, 'seconds'.

  • Массив ячеек из символьных векторов Модели мультивхода For.

Используйте InputUnit, чтобы отслеживать модули входного сигнала. InputUnit не имеет никакого эффекта на поведение системы.

Значение по умолчанию: '' для всех входных каналов

InputGroup

Введите группы канала. Свойство InputGroup позволяет вам присвоить входные каналы систем MIMO в группы и обратиться к каждой группе по наименованию. Задайте входные группы как структуру. В этой структуре имена полей являются названиями группы, и значения полей являются входными каналами, принадлежащими каждой группе. Например:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

создает входные группы под названием controls и noise, которые включают входные каналы 1, 2 и 3, 5, соответственно. Можно затем извлечь подсистему от входных параметров controls до всего выходного использования:

sys(:,'controls')

Значение по умолчанию: Struct без полей

OutputName

Выведите названия канала, заданные как одно из следующего:

  • Вектор символов — Для моделей одно вывода. Например, 'measurements'.

  • Массив ячеек из символьных векторов For модели мультивывода.

Также используйте автоматическое векторное расширение, чтобы присвоить выходные имена для мультивыходных моделей. Например, если sys является 2D выходной моделью, введите:

sys.OutputName = 'measurements';

Выходные имена автоматически расширяются до {'measurements(1)';'measurements(2)'}.

Можно использовать краткое обозначение y, чтобы относиться к свойству OutputName. Например, sys.y эквивалентен sys.OutputName.

Выходные названия канала имеют несколько использования, включая:

  • Идентификация каналов на образцовом отображении и графиках

  • Извлечение подсистем систем MIMO

  • Определение точек контакта, когда взаимосвязанные модели

Значение по умолчанию: '' для всех выходных каналов

OutputUnit

Выведите модули канала, заданные как одно из следующего:

  • Вектор символов — Для моделей одно вывода. Например, 'seconds'.

  • Массив ячеек из символьных векторов For модели мультивывода.

Используйте OutputUnit, чтобы отслеживать модули выходного сигнала. OutputUnit не имеет никакого эффекта на поведение системы.

Значение по умолчанию: '' для всех выходных каналов

OutputGroup

Выведите группы канала. Свойство OutputGroup позволяет вам присвоить выходные каналы систем MIMO в группы и обратиться к каждой группе по наименованию. Задайте выходные группы как структуру. В этой структуре имена полей являются названиями группы, и значения полей являются выходными каналами, принадлежащими каждой группе. Например:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

создает выходные группы под названием temperature и measurement, которые включают выходные каналы 1, и 3, 5, соответственно. Можно затем извлечь подсистему от всех входных параметров до measurement использование выходных параметров:

sys('measurement',:)

Значение по умолчанию: Struct без полей

Name

Имя системы, заданное как вектор символов. Например, 'system_1'.

Значение по умолчанию: ''

Notes

Любой текст, который вы хотите сопоставить с системой, сохраненной как строка или массив ячеек из символьных векторов. Свойство хранит, какой бы ни тип данных вы обеспечиваете. Например, если sys1 и sys2 являются моделями динамической системы, можно установить их свойства Notes можно следующим образом:

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans = 

    "sys1 has a string."


ans =

    'sys2 has a character vector.'

Значение по умолчанию: [0×1 string]

UserData

Любой тип данных вы хотите сопоставить с системой, заданной как любой тип данных MATLAB®.

Значение по умолчанию: []

SamplingGrid

Выборка сетки для образцовых массивов, заданных как структура данных.

Для образцовых массивов, которые выведены путем выборки одной или нескольких независимых переменных, это дорожки свойства значения переменных, сопоставленные с каждой моделью в массиве. Эта информация появляется, когда вы отображаете или строите образцовый массив. Используйте эту информацию, чтобы проследить результаты до независимых переменных.

Установите имена полей структуры данных к именам переменных выборки. Установите значения полей к выбранным значениям переменных, сопоставленным с каждой моделью в массиве. Все переменные выборки должны быть числовыми и скаляр, оцененный, и все массивы выбранных значений должны совпадать с размерностями образцового массива.

Например, предположите, что вы создаете 11 1 массив линейных моделей, sysarr, путем взятия снимков состояния линейной изменяющейся во времени системы во времена t = 0:10. Следующий код хранит выборки времени линейными моделями.

 sysarr.SamplingGrid = struct('time',0:10)

Точно так же предположите, что вы создаете 6 9 образцовый массив, M, путем независимой выборки двух переменных, zeta и w. Следующий код присоединяет значения (zeta,w) к M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)

Когда вы отображаете M, каждая запись в массиве включает соответствующий zeta и значения w.

M
M(:,:,1,1) [zeta=0.3, w=5] =
 
        25
  --------------
  s^2 + 3 s + 25
 

M(:,:,2,1) [zeta=0.35, w=5] =
 
         25
  ----------------
  s^2 + 3.5 s + 25
 
...

Для образцовых массивов, сгенерированных путем линеаризации модели Simulink® в нескольких значениях параметров или рабочих точках, программное обеспечение заполняет SamplingGrid автоматически со значениями переменных, которые соответствуют каждой записи в массиве. Например, команды Simulink Control Design™ linearize и slLinearizer заполняют SamplingGrid таким образом.

Значение по умолчанию: []

Советы

  • Можно управлять моделями genfrd как обычными моделями frd. Аналитические команды частотного диапазона, такие как bode оценивают модель, заменяя каждый настраиваемый параметр на его текущее значение.

Введенный в R2011a

Для просмотра документации необходимо авторизоваться на сайте