Пакет: TuningGoal
Взвешенное частотой ограничение нормы H2 для настройки системы управления
Используйте TuningGoal.WeightedVariance
, чтобы ограничить взвешенный H 2 нормы передаточной функции от заданных входных параметров до выходных параметров. H 2 меры по норме:
Полная энергия импульсного ответа, для детерминированных входных параметров к передаточной функции.
Квадратный корень из выходного отклонения для входа белого шума модульного отклонения, для стохастических входных параметров к передаточной функции. Эквивалентно, H 2 меры по норме среднеквадратичное значение вывода для такого входа.
Можно использовать TuningGoal.WeightedVariance
для системы управления, настраивающейся с настраивающимися командами, такими как systune
или looptune
. Путем определения этой настраивающей цели можно настроить отклик системы на стохастические входные параметры с неоднородным спектром такой как окрашенный шумом или порывами ветра. Можно также использовать TuningGoal.WeightedVariance
, чтобы задать подобные LQG цели производительности.
После того, как вы создадите настраивающийся целевой объект, можно сконфигурировать его далее установкой Properties объекта.
создает настраивающийся целевой Req
=
TuningGoal.Variance(inputname
,outputname
,WL,WR
)Req
. Эта настраивающая цель указывает, что передаточная функция с обратной связью H (s) от заданного входа, чтобы вывести удовлетворяет требование:
|| WL (s) H (s) WR (s) || 2 <1.
Когда вы настраиваете систему дискретного времени, Req
налагает следующее ограничение:
H 2 нормы масштабируется квадратным корнем из шага расчета Ts, чтобы гарантировать сопоставимые результаты настройкой в непрерывное время. Чтобы ограничить истинное дискретное время H 2 нормы, умножьте или WL или WR .
|
Входные сигналы для настраивающейся цели, заданной как вектор символов или, для нескольких - входные настраивающие цели, массив ячеек из символьных векторов.
Для получения дополнительной информации об аналитических точках в моделях системы управления, смотрите представляющего интерес Марка Сигнэлса для Анализа и проектирования Системы управления. |
|
Выходные сигналы для настраивающейся цели, заданной как вектор символов или, для нескольких - выходные настраивающие цели, массив ячеек из символьных векторов.
Для получения дополнительной информации об аналитических точках в моделях системы управления, смотрите представляющего интерес Марка Сигнэлса для Анализа и проектирования Системы управления. |
|
Функции взвешивания частоты, заданные как скаляры, матрицы, или SISO или MIMO числовые модели LTI. Функции || WL (s) H (s) WR (s) || 2 <1. WL обеспечивает взвешивание для выходных каналов H (s), и WR обеспечивает взвешивание для входных каналов. Можно задать скалярные веса или зависимое частотой взвешивание. Чтобы задать зависимое частотой взвешивание, используйте числовую модель LTI. Например:
WL = tf(1,[1 0.01]); WR = 10; Если вы задаете функции взвешивания MIMO, то Если вы настраиваетесь в дискретное время (то есть, с помощью модели Значение |
|
Функция взвешивания частоты для выходных каналов передаточной функции, чтобы ограничить, заданный как скаляр, матрица, или SISO или MIMO числовая модель LTI. Начальное значение этого свойства установлено входным параметром |
|
Функция взвешивания частоты для входных каналов передаточной функции, чтобы ограничить, заданный как скаляр, матрица, или SISO или MIMO числовая модель LTI. Начальное значение этого свойства установлено входным параметром |
|
Имена входного сигнала, заданные как массив ячеек из символьных векторов, которые идентифицируют входные параметры передаточной функции, которую ограничивает настраивающаяся цель. Начальное значение свойства |
|
Имена выходного сигнала, заданные как массив ячеек из символьных векторов, которые идентифицируют выходные параметры передаточной функции, которую ограничивает настраивающаяся цель. Начальное значение свойства |
|
Модели, к которым настраивающаяся цель применяется, заданный как вектор индексов. Используйте свойство Req.Models = 2:4; Когда Значение по умолчанию: |
|
Обратная связь, чтобы открыться при оценке настраивающейся цели, заданной как массив ячеек из символьных векторов, которые идентифицируют открывающие цикл местоположения. Настраивающаяся цель оценена против настройки разомкнутого цикла, созданной вводной обратной связью в местоположениях, которые вы идентифицируете. Если вы используете настраивающуюся цель настроить модель Simulink системы управления, то Если вы используете настраивающуюся цель настроить обобщенную модель ( Например, если Значение по умолчанию: |
|
Имя настраивающейся цели, заданной как вектор символов. Например, если Req.Name = 'LoopReq'; Значение по умолчанию: |
Когда вы используете эту настраивающую цель настроить непрерывно-разовую систему управления, systune
пытается осуществить нулевое сквозное соединение (D = 0) на передаче, которую ограничивает настраивающаяся цель. Нулевое сквозное соединение наложено, потому что H 2 нормы, и поэтому значение настраивающейся цели (см. Алгоритмы), бесконечен для непрерывно-разовых систем с ненулевым сквозным соединением.
systune
осуществляет нулевое сквозное соединение путем фиксации, чтобы обнулить все настраиваемые параметры, которые способствуют проходному термину. systune
возвращает ошибку, когда фиксация этих настраиваемых параметров недостаточна, чтобы осуществить нулевое сквозное соединение. В таких случаях необходимо изменить настраивающуюся цель или управляющую структуру, или вручную зафиксировать некоторые настраиваемые параметры системы к значениям, которые устраняют проходной термин.
Когда ограниченная передаточная функция имеет несколько настраиваемых блоков последовательно, подход программного обеспечения обнуления всех параметров, которые способствуют полной проходной силе быть консервативными. В этом случае достаточно обнулить проходной термин одного из блоков. Если вы хотите управлять, который блок имеет сквозное соединение, зафиксированное, чтобы обнулить, можно вручную зафиксировать сквозное соединение настроенного блока по вашему выбору.
Чтобы зафиксировать параметры настраиваемых блоков к заданным значениям, используйте свойства Value
и Free
параметризации блока. Например, рассмотрите настроенный блок пространства состояний:
C = tunableSS('C',1,2,3);
Чтобы осуществить нулевое сквозное соединение на этом блоке, обнулите его матричное значение D и зафиксируйте параметр.
C.D.Value = 0; C.D.Free = false;
Для получения дополнительной информации о фиксации значений параметров смотрите страницы с описанием Блока Системы управления, такие как tunableSS
.
Эта настраивающая цель налагает неявное ограничение устойчивости на взвешенную передаточную функцию с обратной связью от Input
до Output
, оцененного с циклами, открытыми в точках, идентифицированных в Openings
. Движущими силами, затронутыми этим неявным ограничением, является stabilized dynamics для этой настраивающей цели. MinDecay
и опции MaxRadius
systuneOptions
управляют границами на этих неявно ограниченных движущих силах. Если оптимизации не удается соответствовать границам по умолчанию, или если конфликт границ по умолчанию с другими требованиями, используйте systuneOptions
, чтобы изменить эти значения по умолчанию.
Когда вы настраиваете систему управления с помощью TuningGoal
, программное обеспечение преобразовывает настраивающуюся цель в нормированное скалярное значение f (x). x является вектором свободных (настраиваемых) параметров в системе управления. Программное обеспечение затем настраивает значения параметров, чтобы минимизировать f (x) или управлять f (x) ниже 1, если настраивающейся целью является трудное ограничение.
Для TuningGoal.WeightedVariance
f (x) дают:
T (s, x) является передаточной функцией с обратной связью от Input
до Output
. обозначает H 2 нормы (см. norm
).
Для настройки систем управления дискретного времени f (x) дают:
Ts является шагом расчета передаточной функции дискретного времени T (z, x).
TuningGoal.Gain
| TuningGoal.LoopShape
| TuningGoal.Variance
| looptune
| looptune (for slTuner)
| norm
| slTuner
| systune
| systune (for slTuner)