Пассивное управление с коммуникационными задержками

Этот пример показывает, как смягчить коммуникационные задержки пассивной системы управления.

Основанное на пассивности управление

Теоремой Пассивности, соединением отрицательной обратной связи двух строго пассивных систем и всегда стабильно.

Когда материальная часть пассивна, поэтому выгодно использовать пассивный контроллер для робастности и соображений безопасности. В сетевых системах управления, однако, коммуникационные задержки могут отменить преимущества основанного на пассивности управления и привести к нестабильности. Чтобы проиллюстрировать этот тезис, мы используем объект и 2-й порядок пассивный контроллер от "Управления вибрацией в Гибком Луче" пример. Смотрите этот пример для фона на базовой проблеме управления. Загрузите модель объекта управления, и пассивный контроллер (обратите внимание, что это соответствует в другом примере).

load BeamControl G C

bode(G,C,{1e-2,1e4})
legend('G','C')

Настройку управления показывают ниже, а также импульсный ответ от к.

impulse(feedback(G,C))

Дестабилизация эффекта коммуникационных задержек

Теперь предположите, что существуют существенные коммуникационные задержки между датчиком и контроллером, и между контроллером и приводом. Эта ситуация моделируется в Simulink можно следующим образом.

open_system('DelayedFeedback')

Коммуникационные задержки установлены в

T1 = 1;
T2 = 2;

Симуляция этой модели показывает, что коммуникационные задержки дестабилизируют обратную связь.

Рассеивание преобразования

Чтобы смягчить последствия задержки, можно использовать простое линейное преобразование сигналов, которыми обмениваются между объектом и контроллером по сети.

Рисунок 1: сетевая система управления

Это названо "рассеивающимся преобразованием" и дано формулами

или эквивалентно

с. Обратите внимание на то, что в отсутствие задержек, два рассеивающихся преобразования отменяют друг друга, и блок-схема в рисунке 1 эквивалентна соединению отрицательной обратной связи и.

То, когда задержки присутствуют, однако, более не не равно, и это преобразование рассеивания изменяет свойства системы с обратной связью. На самом деле, наблюдение этого

и это и строго пассивный гарантирует это

Маленькая Теорема Усиления гарантирует, что соединение обратной связи рисунка 1 всегда стабильно, неважно, как большой задержки. Подтвердите это путем создавания модели Simulink блок-схемы в рисунке 1 для значения.

b = 1;

open_system('ScatteringTransformation')

Моделируйте импульсный ответ системы с обратной связью, как сделано прежде. Ответ теперь стабилен и подобен ответу без задержек несмотря на большие задержки.

Для получения дополнительной информации на рассеивающемся преобразовании, смотрите Т. Мэтиэкиса, С. Хирча и М. Басса, "Независимая от задержки Устойчивость Нелинейных Сетевых Систем управления путем Рассеивания Преобразования", Продолжения 2 006 американских Конференций по Управлению, 2006, стр 2801-2806.

Смотрите также

|

Связанные примеры

Больше о

Для просмотра документации необходимо авторизоваться на сайте