initctekf

Создайте расширенный Фильтр Калмана постоянной угловой скорости вращения из отчета обнаружения

Синтаксис

filter = initctekf(detection)

Описание

пример

filter = initctekf(detection) создает и инициализирует постоянную угловую скорость вращения, расширенную Кальман filter от информации, содержавшейся в отчете detection. Для получения дополнительной информации о расширенном Фильтре Калмана, смотрите trackingEKF.

Примеры

свернуть все

Создайте и инициализируйте расширенный объект Фильтра Калмана 2D постоянной угловой скорости вращения из первоначального отчета обнаружения.

Создайте отчет обнаружения из начального 2D измерения, (-250,-40), положения объекта. Примите некоррелированый шум измерения.

Расширьте измерение к трем измерениям путем добавления z-компонента нуля.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Создайте новый фильтр из обнаружения, сообщают и отображают свойства фильтра.

filter = initctekf(detection)
filter = 
  trackingEKF with properties:

                          State: [7x1 double]
                StateCovariance: [7x7 double]

             StateTransitionFcn: @constturn
     StateTransitionJacobianFcn: @constturnjac
                   ProcessNoise: [4x4 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @ctmeas
         MeasurementJacobianFcn: @ctmeasjac
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

Покажите состояние.

filter.State
ans = 7×1

  -250
     0
   -40
     0
     0
     0
     0

Покажите ковариационную матрицу состояния.

filter.StateCovariance
ans = 7×7

     2     0     0     0     0     0     0
     0   100     0     0     0     0     0
     0     0     2     0     0     0     0
     0     0     0   100     0     0     0
     0     0     0     0   100     0     0
     0     0     0     0     0     2     0
     0     0     0     0     0     0   100

Инициализируйте 2D постоянный-turnrate расширенный Фильтр Калмана из первоначального отчета обнаружения, сделанного из начального измерения в сферических координатах. Если вы хотите использовать сферические координаты, то необходимо предоставить структуру параметра измерения как часть отчета обнаружения с набором поля Frame к 'spherical'. Установите угол азимута цели до 45 градусов, области значений к 1 000 метров и уровня области значений к-4.0 м/с.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Создайте структуру параметров измерения. Установите 'HasElevation' на false. Затем измерение состоит из азимута, области значений и уровня области значений.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)
detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initctekf(detection);

Отфильтруйте вектор состояния.

disp(filter.State)
  732.1068
   -2.8284
  667.1068
    2.1716
         0
  -10.0000
         0

Входные параметры

свернуть все

Отчет обнаружения, заданный как объект objectDetection.

Пример: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0; 0 2.0 0; 0 0 1.5])

Выходные аргументы

свернуть все

Расширенный Фильтр Калмана, возвращенный как объект trackingEKF.

Алгоритмы

  • Функция вычисляет матрицу шума процесса, принимающую шаг с одним вторым разом. Функция принимает ускоряющее стандартное отклонение 1 m/s2 и ускоряющее стандартное отклонение угловой скорости вращения 1 °/s2.

  • Можно использовать эту функцию в качестве свойства FilterInitializationFcn объекта multiObjectTracker.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Смотрите также

Функции

Классы

Системные объекты

Введенный в R2017a