Подходящая модель VAR CPI и уровня безработицы

Этот пример показывает, как оценить параметры модели VAR (4). Ряды ответа являются ежеквартальными мерами индекса потребительских цен (CPI) и уровня безработицы.

Загрузите набор данных Data_USEconModel.

load Data_USEconModel

Постройте два ряда на отдельных графиках.

figure;
plot(DataTable.Time,DataTable.CPIAUCSL);
title('Consumer Price Index');
ylabel('Index');
xlabel('Date');

figure;
plot(DataTable.Time,DataTable.UNRATE);
title('Unemployment rate');
ylabel('Percent');
xlabel('Date');

CPI, кажется, растет экспоненциально.

Стабилизируйте CPI путем преобразования его в серию темпов роста. Синхронизируйте два ряда путем удаления первого наблюдения из ряда уровня безработицы.

rcpi = price2ret(DataTable.CPIAUCSL);
unrate = DataTable.UNRATE(2:end);

Создайте модель VAR (4) по умолчанию с помощью краткого синтаксиса.

Mdl = varm(2,4)
Mdl = 
  varm with properties:

     Description: "2-Dimensional VAR(4) Model"
     SeriesNames: "Y1"  "Y2" 
       NumSeries: 2
               P: 4
        Constant: [2×1 vector of NaNs]
              AR: {2×2 matrices of NaNs} at lags [1 2 3 ... and 1 more]
           Trend: [2×1 vector of zeros]
            Beta: [2×0 matrix]
      Covariance: [2×2 matrix of NaNs]

Mdl является объектом модели varm. Это служит шаблоном для образцовой оценки. MATLAB� полагает, что любые значения NaN как неизвестные значения параметров оцениваются. Например, свойство Constant 2 1 вектор значений NaN. Поэтому образцовые константы являются параметрами модели, которые будут оценены.

Соответствуйте модели к данным.

EstMdl = estimate(Mdl,[rcpi unrate])
EstMdl = 
  varm with properties:

     Description: "AR-Stationary 2-Dimensional VAR(4) Model"
     SeriesNames: "Y1"  "Y2" 
       NumSeries: 2
               P: 4
        Constant: [0.00171639 0.316255]'
              AR: {2×2 matrices} at lags [1 2 3 ... and 1 more]
           Trend: [2×1 vector of zeros]
            Beta: [2×0 matrix]
      Covariance: [2×2 matrix]

EstMdl является объектом модели varm. EstMdl является структурно тем же самым как Mdl, но все параметры известны. Чтобы осмотреть предполагаемые параметры, можно отобразить их использующий запись через точку.

Отобразите коэффициент первого термина задержки.

EstMdl.AR{1}
ans = 2×2

    0.3090   -0.0032
   -4.4834    1.3433

Отобразите сводные данные оценки включая все параметры, стандартные погрешности и p-значения для тестирования нулевой гипотезы, что коэффициент 0.

summarize(EstMdl)
 
   AR-Stationary 2-Dimensional VAR(4) Model
 
    Effective Sample Size: 241
    Number of Estimated Parameters: 18
    LogLikelihood: 811.361
    AIC: -1586.72
    BIC: -1524
 
                      Value       StandardError    TStatistic      PValue  
                   ___________    _____________    __________    __________

    Constant(1)      0.0017164      0.0015988         1.0735        0.28303
    Constant(2)        0.31626       0.091961          3.439      0.0005838
    AR{1}(1,1)         0.30899       0.063356          4.877     1.0772e-06
    AR{1}(2,1)         -4.4834         3.6441        -1.2303        0.21857
    AR{1}(1,2)      -0.0031796      0.0011306        -2.8122       0.004921
    AR{1}(2,2)          1.3433       0.065032         20.656      8.546e-95
    AR{2}(1,1)         0.22433       0.069631         3.2217      0.0012741
    AR{2}(2,1)          7.1896          4.005         1.7951       0.072631
    AR{2}(1,2)       0.0012375      0.0018631         0.6642        0.50656
    AR{2}(2,2)        -0.26817        0.10716        -2.5025       0.012331
    AR{3}(1,1)         0.35333       0.068287         5.1742     2.2887e-07
    AR{3}(2,1)           1.487         3.9277        0.37858          0.705
    AR{3}(1,2)       0.0028594      0.0018621         1.5355        0.12465
    AR{3}(2,2)        -0.22709         0.1071        -2.1202       0.033986
    AR{4}(1,1)       -0.047563       0.069026       -0.68906        0.49079
    AR{4}(2,1)          8.6379         3.9702         2.1757       0.029579
    AR{4}(1,2)     -0.00096323      0.0011142       -0.86448        0.38733
    AR{4}(2,2)        0.076725       0.064088         1.1972        0.23123

 
   Innovations Covariance Matrix:
    0.0000   -0.0002
   -0.0002    0.1167

 
   Innovations Correlation Matrix:
    1.0000   -0.0925
   -0.0925    1.0000

Смотрите также

Объекты

Функции

Похожие темы

Для просмотра документации необходимо авторизоваться на сайте