fitmodel

Подходящая модель логистической регрессии к данным о Весе доказательства (WOE)

Синтаксис

sc = fitmodel(sc)
[sc,mdl] = fitmodel(sc)
[sc,mdl] = fitmodel(___,Name,Value)

Описание

пример

sc = fitmodel(sc) соответствует модели логистической регрессии к данным о Весе доказательства (WOE) и хранит образцовые имена предиктора и соответствующие коэффициенты в объекте creditscorecard.

fitmodel внутренне преобразовывает все переменные прогноза в значения WOE, с помощью интервалов, найденных с автоматическим или ручным процессом раскладывания. Переменная отклика сопоставлена так, чтобы "Хороший" был 1, и "Плохо" был 0. Это подразумевает, что выше (немасштабированные) очки соответствуют лучше (менее опасным) людям (меньшая вероятность значения по умолчанию).

Также можно использовать setmodel, чтобы обеспечить имена предикторов, которые вы хотите в модели логистической регрессии, наряду с их соответствующими коэффициентами.

пример

[sc,mdl] = fitmodel(sc) соответствует модели логистической регрессии к данным о Весе доказательства (WOE) и хранит образцовые имена предиктора и соответствующие коэффициенты в объекте creditscorecard. fitmodel возвращает обновленный объект creditscorecard и объект GeneralizedLinearModel, содержащий подобранную модель.

fitmodel внутренне преобразовывает все переменные прогноза в значения WOE, с помощью интервалов, найденных с автоматическим или ручным процессом раскладывания. Переменная отклика сопоставлена так, чтобы "Хороший" был 1, и "Плохо" был 0. Это подразумевает, что выше (немасштабированные) очки соответствуют лучше (менее опасным) людям (меньшая вероятность значения по умолчанию).

Также можно использовать setmodel, чтобы обеспечить имена предикторов, которые вы хотите в модели логистической регрессии, наряду с их соответствующими коэффициентами.

пример

[sc,mdl] = fitmodel(___,Name,Value) соответствует модели логистической регрессии к данным о Весе доказательства (WOE) с помощью дополнительных аргументов пары "имя-значение" и хранит образцовые имена предиктора и соответствующие коэффициенты в объекте creditscorecard. Используя аргументы пары "имя-значение", можно выбрать который Обобщенная Линейная Модель соответствовать данным. fitmodel возвращает обновленный объект creditscorecard и объект GeneralizedLinearModel, содержащий подобранную модель.

Примеры

свернуть все

Создайте объект creditscorecard с помощью файла CreditCardData.mat, чтобы загрузить data (использующий набор данных от Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID')
sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Выполните автоматическое раскладывание.

sc = autobinning(sc)
sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Используйте fitmodel, чтобы соответствовать модели логистической регрессии использование данных о Весе доказательства (WOE). fitmodel внутренне преобразовывает все переменные прогноза в значения WOE, с помощью интервалов, найденных с автоматическим процессом раскладывания. fitmodel затем соответствует модели логистической регрессии использование пошагового метода (по умолчанию).

sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792


1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Используйте файл CreditCardData.mat, чтобы загрузить данные (dataWeights), который содержит столбец (RowWeights) для весов (использующий набор данных от Refaat 2011).

load CreditCardData

Создайте объект creditscorecard с помощью дополнительного аргумента пары "имя-значение" для 'WeightsVar'.

sc = creditscorecard(dataWeights,'IDVar','CustID','WeightsVar','RowWeights')
sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x12 table]

Выполните автоматическое раскладывание.

sc = autobinning(sc)
sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x12 table]

Используйте fitmodel, чтобы соответствовать модели логистической регрессии использование данных о Весе доказательства (WOE). fitmodel внутренне преобразовывает все переменные прогноза в значения WOE, с помощью интервалов, найденных с автоматическим процессом раскладывания. fitmodel затем соответствует модели логистической регрессии использование пошагового метода (по умолчанию). Когда дополнительный аргумент пары "имя-значение" 'WeightsVar' используется, чтобы задать наблюдение (выборка) веса, mdl, вывод использует взвешенные количества с stepwiseglm и fitglm.

[sc,mdl] = fitmodel(sc);
1. Adding CustIncome, Deviance = 764.3187, Chi2Stat = 15.81927, PValue = 6.968927e-05
2. Adding TmWBank, Deviance = 751.0215, Chi2Stat = 13.29726, PValue = 0.0002657942
3. Adding AMBalance, Deviance = 743.7581, Chi2Stat = 7.263384, PValue = 0.007037455

Generalized linear regression model:
    logit(status) ~ 1 + CustIncome + TmWBank + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70642     0.088702     7.964    1.6653e-15
    CustIncome      1.0268      0.25758    3.9862    6.7132e-05
    TmWBank         1.0973      0.31294    3.5063     0.0004543
    AMBalance       1.0039      0.37576    2.6717     0.0075464


1200 observations, 1196 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 36.4, p-value = 6.22e-08

Создайте объект creditscorecard с помощью файла CreditCardData.mat, чтобы загрузить data (использующий набор данных от Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID')
sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Выполните автоматическое раскладывание.

sc = autobinning(sc,'Algorithm','EqualFrequency')
sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Используйте fitmodel, чтобы соответствовать модели логистической регрессии использование данных о Весе доказательства (WOE). fitmodel внутренне преобразовывает все переменные прогноза в значения WOE, с помощью интервалов, найденных с автоматическим процессом раскладывания. Установите аргумент пары "имя-значение" VariableSelection FullModel указывать, что все предикторы должны быть включены в подходящую модель логистической регрессии.

sc = fitmodel(sc,'VariableSelection','FullModel');
Generalized linear regression model:
    status ~ [Linear formula with 10 terms in 9 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE        tStat      pValue  
                   ________    ________    _______    _________

    (Intercept)    0.70262     0.063862     11.002    3.734e-28
    CustAge        0.57683      0.27064     2.1313     0.033062
    TmAtAddress     1.0653      0.55233     1.9287     0.053762
    ResStatus       1.4189      0.65162     2.1775     0.029441
    EmpStatus      0.89916      0.29217     3.0776     0.002087
    CustIncome     0.77506      0.21942     3.5323    0.0004119
    TmWBank         1.0826      0.26583     4.0727    4.648e-05
    OtherCC         1.1354      0.52827     2.1493     0.031612
    AMBalance      0.99315      0.32642     3.0425    0.0023459
    UtilRate       0.16723      0.55745    0.29999      0.76419


1200 observations, 1190 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 85.6, p-value = 1.25e-14

Создайте объект creditscorecard с помощью файла CreditCardData.mat, чтобы загрузить dataMissing с отсутствующими значениями.

load CreditCardData.mat 
head(dataMissing,5)
ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))
Number of rows: 1200
fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))
Number of missing values CustAge: 30
fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))
Number of missing values ResStatus: 40

Используйте creditscorecard с набором аргумента 'BinMissingData' значения имени к true к интервалу недостающие числовые или категориальные данные в отдельном интервале.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Отобразите и постройте информацию об интервале для числовых данных для 'CustAge', который включает недостающие данные в отдельный интервал, маркировал <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)
        Bin        Good    Bad     Odds       WOE       InfoValue 
    ___________    ____    ___    ______    ________    __________

    '[-Inf,33)'     69      52    1.3269    -0.42156      0.018993
    '[33,37)'       63      45       1.4    -0.36795      0.012839
    '[37,40)'       72      47    1.5319     -0.2779     0.0079824
    '[40,46)'      172      89    1.9326    -0.04556     0.0004549
    '[46,48)'       59      25      2.36     0.15424     0.0016199
    '[48,51)'       99      41    2.4146     0.17713     0.0035449
    '[51,58)'      157      62    2.5323     0.22469     0.0088407
    '[58,Inf]'      93      25      3.72     0.60931      0.032198
    '<missing>'     19      11    1.7273    -0.15787    0.00063885
    'Totals'       803     397    2.0227         NaN      0.087112
plotbins(sc,'CustAge')

Отобразите и постройте информацию об интервале для категориальных данных для 'ResStatus', который включает недостающие данные в отдельный интервал, маркировал <missing>.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)
        Bin         Good    Bad     Odds        WOE       InfoValue 
    ____________    ____    ___    ______    _________    __________

    'Tenant'        296     161    1.8385    -0.095463     0.0035249
    'Home Owner'    352     171    2.0585     0.017549    0.00013382
    'Other'         128      52    2.4615      0.19637     0.0055808
    '<missing>'      27      13    2.0769     0.026469    2.3248e-05
    'Totals'        803     397    2.0227          NaN     0.0092627
plotbins(sc,'ResStatus')

Используйте fitmodel, чтобы соответствовать модели логистической регрессии использование данных о Весе доказательства (WOE). fitmodel внутренне преобразовывает все переменные прогноза в значения WOE, с помощью интервалов, найденных с автоматическим процессом раскладывания. fitmodel затем соответствует модели логистической регрессии использование пошагового метода (по умолчанию). Для предикторов, которые имеют недостающие данные, существует явный интервал <missing> с соответствующим значением WOE, вычисленным из данных. При использовании fitmodel соответствующее значение WOE для <недостающего> интервала применяется при выполнении преобразования WOE. Например, отсутствующее значение для потребительского возраста (CustAge) заменяется -0.15787, который является значением WOE для интервала <missing> для предиктора CustAge. Однако, когда 'BinMissingData' является ложным, отсутствующее значение для CustAge остается как недостающее (NaN) при применении преобразования WOE.

[sc,mdl] = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775


1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Входные параметры

свернуть все

Модель протокола результатов кредита, заданная как объект creditscorecard. Используйте creditscorecard, чтобы создать объект creditscorecard.

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: [sc,mdl] = fitmodel(sc,'VariableSelection','FullModel')

Переменные прогноза для подбора кривой объекту creditscorecard, заданному как пара, разделенная запятой, состоящая из 'PredictorVars' и массива ячеек из символьных векторов. Когда обеспечено, свойство объекта creditscorecard PredictorsVars обновляется. Обратите внимание на то, что порядок предикторов в исходном наборе данных осуществляется, независимо от порядка, в котором обеспечивается 'PredictorVars'. Если не, если, предикторы, используемые, чтобы создать объект creditscorecard (при помощи creditscorecard), используются.

Типы данных: cell

Метод выбора переменной, чтобы соответствовать модели логистической регрессии, заданной как пара, разделенная запятой, состоящая из 'VariableSelection' и вектора символов со значениями 'Stepwise' или 'FullModel':

  • Stepwise — Использует пошаговый метод выбора, который вызывает функцию Statistics and Machine Learning Toolbox™ stepwiseglm. Только переменные в PredictorVars могут потенциально стать частью модели и используют аргумент пары "имя-значение" StartingModel, чтобы выбрать стартовую модель.

  • FullModel — Подбирает модель со всеми переменными прогноза в аргументе пары "имя-значение" PredictorVars и вызывает fitglm.

Примечание

Только переменные в свойстве PredictorVars объекта creditscorecard могут потенциально стать частью логистической регрессии, образцовые и только линейные члены включены в эту модель без взаимодействий или любые другие условия высшего порядка.

Переменная отклика сопоставлена так, чтобы “Хороший” был 1 и “Плохо” был 0.

Типы данных: char

Первоначальная модель для метода выбора переменной Stepwise, заданного как пара, разделенная запятой, состоящая из 'StartingModel' и вектора символов со значениями 'Constant' или 'Linear'. Эта опция определяет первоначальную модель (постоянный или линейный), с которого запускается функция Statistics and Machine Learning Toolbox stepwiseglm.

  • Constant — Запускает пошаговый метод с пустого (постоянный только) модель.

  • Linear — Запускает пошаговый метод с полного (все предикторы в) модель.

Примечание

StartingModel используется только для опции Stepwise VariableSelection и не имеет никакого эффекта для опции FullModel VariableSelection.

Типы данных: char

Индикатор к информации о модели дисплея в командной строке, заданной как пара, разделенная запятой, состоящая из 'Display' и вектора символов со значением 'On' или 'Off'.

Типы данных: char

Выходные аргументы

свернуть все

Модель протокола результатов кредита, возвращенная как обновленный объект creditscorecard. Объект creditscorecard содержит информацию об образцовых предикторах, и коэффициенты раньше соответствовали данным WOE. Для получения дополнительной информации об использовании объекта creditscorecard смотрите creditscorecard.

Подходящая логистическая модель, повторно настроенная как объект типа GeneralizedLinearModel, содержащий подобранную модель. Для получения дополнительной информации об объекте GeneralizedLinearModel смотрите GeneralizedLinearModel.

Примечание

При создании объекта creditscorecard с creditscorecard, если дополнительный аргумент пары "имя-значение" WeightsVar использовался, чтобы задать наблюдение (выборка) веса, то mdl использует взвешенные количества с stepwiseglm и fitglm.

Больше о

свернуть все

Используя fitmodel с весами

Когда веса наблюдения обеспечиваются в протоколе результатов кредита data, веса используются, чтобы калибровать коэффициенты модели.

Базовая Статистика и Машинное обучение Toolboxfunctionality для stepwiseglm и fitglm поддерживают веса наблюдения. Веса также влияют на логистическую модель через значения WOE. Преобразование WOE применяется ко всем предикторам прежде, чем соответствовать логистической модели. Веса наблюдения непосредственно влияют на значения WOE. Для получения дополнительной информации смотрите Используя bininfo с Весами и Моделированием Протокола результатов Кредита Используя Веса Наблюдения.

Поэтому точки протокола результатов кредита и итоговый счет зависят от весов наблюдения и через логистические коэффициенты модели и через значения WOE.

Модели

Модель логистической регрессии используется в объекте creditscorecard.

Для модели вероятность того, чтобы быть “Плохим” дана ProbBad = exp(-s) / (1 + exp(-s)).

Ссылки

[1] Андерсон, R. Инструментарий рейтинга кредитоспособности. Издательство Оксфордского университета, 2007.

[2] Refaat, M. Протоколы результатов кредитного риска: разработка и реализация Используя SAS. lulu.com, 2011.

Введенный в R2014b

Для просмотра документации необходимо авторизоваться на сайте