corrcoef

Коэффициенты корреляции

Синтаксис

R = corrcoef(A)
R = corrcoef(A,B)
[R,P] = corrcoef(___)
[R,P,RL,RU] = corrcoef(___)
___ = corrcoef(___,Name,Value)

Описание

пример

R = corrcoef(A) возвращает матрицу коэффициентов корреляции для A, где столбцы A представляют случайные переменные, и строки представляют наблюдения.

пример

R = corrcoef(A,B) возвращает коэффициенты между двумя случайными переменными A и B.

пример

[R,P] = corrcoef(___) возвращает матрицу коэффициентов корреляции и матрицу p-значений для тестирования гипотезы, что нет никакого отношения между наблюдаемыми явлениями (нулевая гипотеза). Используйте этот синтаксис с любым из аргументов от предыдущих синтаксисов. Если недиагональный элемент P меньше, чем уровень значения (значением по умолчанию является 0.05), то соответствующая корреляция в R рассматривается значительной. Этот синтаксис недопустим, если R содержит комплексные элементы.

пример

[R,P,RL,RU] = corrcoef(___) включает матрицы, содержащие нижние и верхние границы для 95%-го доверительного интервала для каждого коэффициента. Этот синтаксис недопустим, если R содержит комплексные элементы.

пример

___ = corrcoef(___,Name,Value) возвращает любой из выходных аргументов от предыдущих синтаксисов с дополнительными опциями, заданными одним или несколькими аргументами пары Name,Value. Например, corrcoef(A,'Alpha',0.1) задает 90%-й доверительный интервал, и corrcoef(A,'Rows','complete') не использует все строки A, содержащего одно или несколько значений NaN.

Примеры

свернуть все

Вычислите коэффициенты корреляции для матрицы с двумя нормально распределенными, случайными столбцами и одним столбцом, который задан с точки зрения другого. Поскольку третий столбец A является кратным второму, эти две переменные непосредственно коррелируются, таким образом коэффициентом корреляции в (2,3) и записях (3,2) R является 1.

x = randn(6,1);
y = randn(6,1);
A = [x y 2*y+3];
R = corrcoef(A)
R = 3×3

    1.0000   -0.6237   -0.6237
   -0.6237    1.0000    1.0000
   -0.6237    1.0000    1.0000

Вычислите матрицу коэффициента корреляции между двумя нормально распределенными, случайными векторами 10 наблюдений каждый.

A = randn(10,1);
B = randn(10,1);
R = corrcoef(A,B)
R = 2×2

    1.0000    0.4518
    0.4518    1.0000

Вычислите коэффициенты корреляции и p-значения нормально распределенной, случайной матрицы с добавленным четвертым столбцом, равным сумме других трех столбцов. Поскольку последний столбец A является линейной комбинацией других, корреляция введена между четвертой переменной и каждой из других трех переменных. Поэтому четвертая строка и четвертый столбец P содержат очень маленькие p-значения, идентифицируя их как значительные корреляции.

A = randn(50,3);       
A(:,4) = sum(A,2); 
[R,P] = corrcoef(A)
R = 4×4

    1.0000    0.1135    0.0879    0.7314
    0.1135    1.0000   -0.1451    0.5082
    0.0879   -0.1451    1.0000    0.5199
    0.7314    0.5082    0.5199    1.0000

P = 4×4

    1.0000    0.4325    0.5438    0.0000
    0.4325    1.0000    0.3146    0.0002
    0.5438    0.3146    1.0000    0.0001
    0.0000    0.0002    0.0001    1.0000

Создайте нормально распределенную, случайную матрицу, с добавленным четвертым столбцом, равным сумме других трех столбцов, и вычислите коэффициенты корреляции, p-значения и нижние и верхние границы на коэффициентах.

A = randn(50,3);       
A(:,4) = sum(A,2); 
[R,P,RL,RU] = corrcoef(A)
R = 4×4

    1.0000    0.1135    0.0879    0.7314
    0.1135    1.0000   -0.1451    0.5082
    0.0879   -0.1451    1.0000    0.5199
    0.7314    0.5082    0.5199    1.0000

P = 4×4

    1.0000    0.4325    0.5438    0.0000
    0.4325    1.0000    0.3146    0.0002
    0.5438    0.3146    1.0000    0.0001
    0.0000    0.0002    0.0001    1.0000

RL = 4×4

    1.0000   -0.1702   -0.1952    0.5688
   -0.1702    1.0000   -0.4070    0.2677
   -0.1952   -0.4070    1.0000    0.2825
    0.5688    0.2677    0.2825    1.0000

RU = 4×4

    1.0000    0.3799    0.3575    0.8389
    0.3799    1.0000    0.1388    0.6890
    0.3575    0.1388    1.0000    0.6974
    0.8389    0.6890    0.6974    1.0000

Матрицы RL и RU дают нижние и верхние границы, соответственно, на каждом коэффициенте корреляции согласно 95%-му доверительному интервалу по умолчанию. Можно изменить доверительный уровень путем определения значения Alpha, который задает уверенность процента, % 100*(1-Alpha). Например, используйте значение Alpha, равное 0,01, чтобы вычислить 99%-й доверительный интервал, который отражается в границах RL и RU. Интервалы, заданные содействующими границами в RL и RU, больше для 99%-й уверенности по сравнению с 95%, поскольку более высокая уверенность требует более содержащей области значений потенциальных значений корреляции.

[R,P,RL,RU] = corrcoef(A,'Alpha',0.01)
R = 4×4

    1.0000    0.1135    0.0879    0.7314
    0.1135    1.0000   -0.1451    0.5082
    0.0879   -0.1451    1.0000    0.5199
    0.7314    0.5082    0.5199    1.0000

P = 4×4

    1.0000    0.4325    0.5438    0.0000
    0.4325    1.0000    0.3146    0.0002
    0.5438    0.3146    1.0000    0.0001
    0.0000    0.0002    0.0001    1.0000

RL = 4×4

    1.0000   -0.2559   -0.2799    0.5049
   -0.2559    1.0000   -0.4792    0.1825
   -0.2799   -0.4792    1.0000    0.1979
    0.5049    0.1825    0.1979    1.0000

RU = 4×4

    1.0000    0.4540    0.4332    0.8636
    0.4540    1.0000    0.2256    0.7334
    0.4332    0.2256    1.0000    0.7407
    0.8636    0.7334    0.7407    1.0000

Создайте нормально распределенную матрицу, включающую стоимость NaN, и вычислите матрицу коэффициента корреляции, исключая любые строки, которые содержат NaN.

A = randn(5,3);
A(1,3) = NaN;
A(3,2) = NaN;
A
A = 5×3

    0.5377   -1.3077       NaN
    1.8339   -0.4336    3.0349
   -2.2588       NaN    0.7254
    0.8622    3.5784   -0.0631
    0.3188    2.7694    0.7147

R = corrcoef(A,'Rows','complete')
R = 3×3

    1.0000   -0.8506    0.8222
   -0.8506    1.0000   -0.9987
    0.8222   -0.9987    1.0000

Используйте 'all', чтобы включать все значения NaN в вычисление.

R = corrcoef(A,'Rows','all')
R = 3×3

     1   NaN   NaN
   NaN   NaN   NaN
   NaN   NaN   NaN

Используйте 'pairwise', чтобы вычислить каждый коэффициент корреляции 2D столбца на попарной основе. Если один из этих двух столбцов содержит NaN, та строка не использована.

R = corrcoef(A,'Rows','pairwise')
R = 3×3

    1.0000   -0.3388    0.4649
   -0.3388    1.0000   -0.9987
    0.4649   -0.9987    1.0000

Входные параметры

свернуть все

Входной массив, заданный как матрица.

  • Если A является скаляром, corrcoef(A) возвращает NaN.

  • Если A является вектором, corrcoef(A) возвращает 1.

Типы данных: single | double
Поддержка комплексного числа: Да

Дополнительный входной массив, заданный как вектор, матрица или многомерный массив.

  • A и B должны быть одного размера.

  • Если A и B являются скалярами, то corrcoef(A,B) возвращает 1. Если A и B равны, однако, corrcoef(A,B) возвращает NaN.

  • Если A и B являются матрицами или многомерными массивами, то corrcoef(A,B) преобразовывает каждый вход в свое векторное представление и эквивалентен corrcoef(A(:),B(:)) или corrcoef([A(:) B(:)]).

  • Если A и B являются пустыми массивами 0 на 0, corrcoef(A,B) возвращает матрицу 2 на 2 значений NaN.

Типы данных: single | double
Поддержка комплексного числа: Да

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: R = corrcoef(A,'Alpha',0.03)

Уровень значения, заданный как номер между 0 и 1. Значение параметра 'Alpha' задает доверительный уровень процента, 100* (1-Alpha) %, для коэффициентов корреляции, который определяет границы в RL и RU.

Типы данных: single | double

Использование опции NaN, заданной как одно из этих значений:

  • все Включайте все значения NaN во вход прежде, чем вычислить коэффициенты корреляции.

  • завершенный Не используйте любые строки входа, содержащего значения NaN прежде, чем вычислить коэффициенты корреляции. Эта опция всегда возвращает положительную полуопределенную матрицу.

  • 'pairwise' — Не используйте любые строки, содержащие NaN только на попарной основе для каждого вычисления коэффициента корреляции 2D столбца. Эта опция может возвратить матрицу, которая не является положительна полуопределенный.

Типы данных: char

Выходные аргументы

свернуть все

Коэффициенты корреляции, возвращенные как матрица.

  • Для одного матричного входа R имеет размер [size(A,2) size(A,2)] на основе количества случайных переменных (столбцы), представленные A. Диагональные элементы установлены в один условно, в то время как недиагональные записи являются коэффициентами корреляции переменных пар. Значения коэффициентов могут колебаться от-1 до 1, с-1 представлением прямой, отрицательной корреляции, 0 представлениями никакой корреляции и 1 представлением прямой, положительной корреляции. R симметричен.

  • Для двух входных параметров R является матрицей 2 на 2 с единицами по диагонали и коэффициентами корреляции вдоль недиагонального.

  • Если какая-либо случайная переменная является постоянной, ее корреляция со всеми другими переменными не определена, и соответствующим значением строки и столбца является NaN.

P-значения, возвращенные как матрица. P симметричен и одного размера как R. Диагональные элементы являются всеми единицами, и недиагональные записи являются p-значениями для каждой переменной пары. P-значения колеблются от 0 до 1, где значения близко к 0 соответствуют значительной корреляции в R и низкой вероятности наблюдения нулевой гипотезы.

Нижняя граница для коэффициента корреляции, возвращенного как матрица. RL симметричен и одного размера как R. Диагональные элементы являются всеми единицами, и недиагональные записи являются 95%-й нижней границей доверительного интервала для соответствующего коэффициента в R. Синтаксис, возвращающий RL, недопустим, если R содержит комплексные числа.

Верхняя граница для коэффициента корреляции, возвращенного как матрица. RU симметричен и одного размера как R. Диагональные элементы являются всеми единицами, и недиагональные записи являются 95%-й верхней границей доверительного интервала для соответствующего коэффициента в R. Синтаксис, возвращающий RL, недопустим, если R содержит комплексные числа.

Больше о

свернуть все

Коэффициент корреляции

Коэффициент корреляции двух случайных переменных является мерой их линейной зависимости. Если каждая переменная имеет скалярные наблюдения N, то Коэффициент корреляции пирсона задан как

ρ(A,B)=1N1i=1N(AiμA¯σA)(BiμBσB),

где μA и σA среднее и стандартное отклонение A, соответственно, и μB и σB среднее и стандартное отклонение B. Также можно задать коэффициент корреляции с точки зрения ковариации A и B:

ρ(A,B)=cov(A,B)σAσB.

Матрица коэффициента корреляции двух случайных переменных является матрицей коэффициентов корреляции для каждой попарной переменной комбинации,

R=(ρ(A,A)ρ(A,B)ρ(B,A)ρ(B,B)).

Поскольку A и B всегда непосредственно коррелируются себе, диагональные элементы равняются всего 1, то есть,

R=(1ρ(A,B)ρ(B,A)1).

Ссылки

[1] Фишер, R.A. Статистические методы для научных работников, 13-го Эда., Hafner, 1958.

[2] Кендалл, M.G. Усовершенствованная теория статистики, 4-го Эда., Макмиллан, 1979.

[3] Нажмите, W.H., Teukolsky, S.A., Vetterling, W.T., и Flannery, B.P. Числовые рецепты в C, 2-м Эде., издательство Кембриджского университета, 1992.

Расширенные возможности

Смотрите также

| | |

Представлено до R2006a

Для просмотра документации необходимо авторизоваться на сайте