Системный объект: поэтапный. ReplicatedSubarray
Пакет: поэтапный
Направленность реплицированного подмассива
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)
D = directivity(
возвращает Направленность (dBi) реплицированного массива антенны или элемента микрофона, H
,FREQ
,ANGLE
)H
, на частотах, заданных FREQ
и в углах направления, заданного ANGLE
.
D = directivity(
возвращает направленность с дополнительными опциями, заданными одним или несколькими аргументами пары H
,FREQ
,ANGLE
,Name,Value
)Name,Value
.
H
Реплицированный подмассивРеплицированный подмассив, заданный как Системный объект phased.ReplicatedSubarray
.
Пример: H = phased.ReplicatedSubarray;
FREQ
— Частота для вычислительной направленности и шаблоновЧастоты для вычислительной направленности и шаблонов, заданных как положительная скалярная величина или 1 L вектором - строкой с действительным знаком. Единицы частоты находятся в герц.
Для антенны, микрофона, или гидрофона гидролокатора или элемента проектора, FREQ
должен лечь в области значений значений, заданных свойством FrequencyRange
или FrequencyVector
элемента. В противном случае элемент не производит ответа, и направленность возвращена как –Inf
. Большинство элементов использует свойство FrequencyRange
за исключением phased.CustomAntennaElement
и phased.CustomMicrophoneElement
, которые используют свойство FrequencyVector
.
Для массива элементов FREQ
должен лечь в частотном диапазоне элементов, которые составляют массив. В противном случае массив не производит ответа, и направленность возвращена как –Inf
.
Пример: [1e8 2e6]
Типы данных: double
\angle
Углы для вычислительной направленностиУглы для вычислительной направленности, заданной как 1 M вектором - строкой с действительным знаком или 2 M матрицей с действительным знаком, где M является количеством угловых направлений. Угловые модули в градусах. Если ANGLE
является 2 M матрицей, то каждый столбец задает направление в азимуте и повышении, [az;el]
. Угол азимута должен находиться между-180 ° и 180 °. Угол повышения должен находиться между-90 ° и 90 °.
Если ANGLE
является 1 M вектором, то каждая запись представляет угол азимута с углом повышения, принятым, чтобы быть нулем.
Угол азимута является углом между x - ось и проекцией вектора направления на плоскость xy. Этот угол положителен, когда измерено от x - оси к y - ось. Угол повышения является углом между вектором направления и плоскостью xy. Этот угол положителен, когда измерено к z - ось. Смотрите Углы Азимута и Повышения.
Пример: [45 60; 0 10]
Типы данных: double
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'PropagationSpeed'
— Скорость распространения сигналаСкорость распространения сигнала, заданная как пара, разделенная запятой, состоящая из 'PropagationSpeed'
и положительной скалярной величины в метрах в секунду.
Пример: 'PropagationSpeed',physconst('LightSpeed')
Типы данных: double
'Weights'
— Веса подмассиваВеса подмассива, заданные как пара, разделенная запятой, состоящая из 'Weights
' и N-by-1 вектор-столбец с комплексным знаком или N-by-M матрица с комплексным знаком. Размерность N является количеством подмассивов в массиве. Размерность L является количеством частот, заданных аргументом FREQ
.
Размерность Weights | Размерность FREQ | Цель |
---|---|---|
N-by-1 вектор-столбец с комплексным знаком | Скаляр или 1 L вектором - строкой | Применяет набор весов для одной частоты или для всех частот L. |
N-by-L матрица с комплексным знаком | 1 L вектором - строкой | Применяет каждый из столбцов L ‘Weights’ для соответствующей частоты в аргументе FREQ . |
Пример: 'Weights',ones(N,M)
Типы данных: double
'SteerAngle'
— Руководящий угол подмассива[0;0]
(значение по умолчанию) | скаляр | вектор-столбец с 2 элементамиРуководящий угол подмассива, заданный как пара, разделенная запятой, состоящая из 'SteerAngle'
и скаляра или 2 1 вектор-столбец.
Если 'SteerAngle'
2 1 вектор-столбец, он имеет форму [azimuth; elevation]
. Угол азимута должен быть между-180 ° и 180 °, включительно. Угол повышения должен быть между-90 ° и 90 °, включительно.
Если 'SteerAngle'
является скаляром, он задает угол азимута только. В этом случае угол повышения принят, чтобы быть 0.
Эта опция применяется только, когда свойство 'SubarraySteering'
Системного объекта установлено в 'Phase'
или 'Time'
.
Пример: 'SteerAngle',[20;30]
Типы данных: double
'ElementWeights'
— Веса применились к элементам в подмассиве1
(значение по умолчанию) | NSE с комплексным знаком-by-N матрицаВеса элемента подмассива, заданные как NSE с комплексным знаком-by-N матрица. Веса применяются к отдельным элементам в подмассиве. Все подмассивы имеют те же размерности и размеры. NSE является числом элементов в каждом подмассиве, и N является количеством подмассивов. Каждый столбец матрицы задает веса для соответствующего подмассива.
Чтобы включить эту пару "имя-значение", установите свойство SubarraySteering
массива к 'Custom'
.
Типы данных: double
Поддержка комплексного числа: Да
D
НаправленностьНаправленность, возвращенная как M-by-L матрица. Каждая строка соответствует одному из углов M, заданных ANGLE
. Каждый столбец соответствует одному из значений частоты L, заданных в FREQ
. Модули направленности находятся в dBi, где dBi задан как усиление элемента относительно изотропного теплоотвода.
Вычислите направленность массива, созданного от подмассивов ULA. Определите направленность реплицированного подмассива, когда массив будет управляться к к 30 азимутам степеней.
Установите скорость распространения сигнала на скорость света. Установите частоту сигнала на 300 МГц.
c = physconst('LightSpeed');
fc = 3e8;
lambda = c/fc;
Создайте ULA с 4 элементами изотропных элементов антенны, расположенных с интервалами с 0.4 длинами волны независимо.
myArray = phased.ULA; myArray.NumElements = 4; myArray.ElementSpacing = 0.4*lambda;
Создайте 2 1 реплицированный подмассив.
myRepArray = phased.ReplicatedSubarray; myRepArray.Subarray = myArray; myRepArray.Layout = 'Rectangular'; myRepArray.GridSize = [2 1]; myRepArray.GridSpacing = 'Auto'; myRepArray.SubarraySteering = 'Time';
Регулируйте массив к 30 азимутам степеней и обнулите повышение степеней.
ang = [30;0]; mySV = phased.SteeringVector; mySV.SensorArray = myRepArray; mySV.PropagationSpeed = c;
Найдите направленность в 30 азимутах степеней.
d = directivity(myRepArray,fc,ang,... 'PropagationSpeed',c,... 'Weights',step(mySV,fc,ang),... 'SteerAngle',ang)
d = 7.4776
Направленность описывает направленность диаграммы направленности элемента датчика или массива элементов датчика.
Более высокая направленность желаема когда это необходимо, чтобы передать больше излучения в определенном направлении. Направленность является отношением переданной излучающей интенсивности в заданном направлении к излучающей интенсивности, переданной изотропным теплоотводом с той же общей переданной степенью
где U rad(θ,φ) является излучающей интенсивностью передатчика в направлении, общее количество (θ,φ) и P является общей степенью, переданной изотропным теплоотводом. Для элемента получения или массива, направленность измеряет чувствительность к излучению, прибывающему от определенного направления. Принцип взаимности показывает, что направленность элемента или массива, используемого для приема, равняется направленности того же элемента или массива, используемого для передачи. Когда преобразовано в децибелы, направленность обозначается как dBi. Для получения информации о направленности считайте примечания по направленности Элемента и направленности Массивов.
Вычислительная направленность требует, чтобы интеграция далекого поля передала излучающую интенсивность по всем направлениям на пробеле, чтобы получить общую переданную степень. Существует различие между тем, как то интегрирование выполняется, когда антенны Antenna Toolbox™ используются в поэтапном массиве и когда антенны Phased Array System Toolbox™ используются. Когда массив содержит антенны Antenna Toolbox, вычисление направленности выполняется с помощью треугольной mesh, созданной из 500 расположенных с равными интервалами точек по сфере. Для антенн Phased Array System Toolbox интегрирование использует универсальную прямоугольную сетку точек, расположенных с интервалами на расстоянии в 1 ° в азимуте и повышении по сфере. Могут быть существенные различия в вычисленной направленности, специально для больших массивов.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.