Этот пример показывает, как обучить агент глубоко детерминированного градиента политики (DDPG) качаться и балансировать маятник с наблюдения изображений, смоделированного в MATLAB®.
Для получения дополнительной информации об агентах DDPG смотрите Глубоко Детерминированные Агенты Градиента политики.
Среда обучения укрепления для этого примера является простым лишенным трения маятником, который первоначально зависает в нисходящем положении. Учебная цель состоит в том, чтобы заставить маятник стоять вертикально, не запинаясь за использование и падая минимального усилия по управлению.
Для этой среды:
Восходящее сбалансированное положение маятника является радианами 0
, и нисходящее положение зависания является радианами pi
Сигналом действия крутящего момента от агента до среды является от -2
до 2
Nm
Наблюдения от среды являются изображением, указывающим на местоположение массы маятника и маятника угловая скорость.
Вознаграждение , если на каждом временном шаге:
где:
угол смещения от вертикального положения
производная угла рассогласования
усилие по управлению от предыдущего временного шага
Для получения дополнительной информации об этой модели смотрите Загрузку Предопределенные Среды Системы управления.
Создайте предопределенный интерфейс среды для маятника.
env = rlPredefinedEnv('SimplePendulumWithImage-Continuous')
env = SimplePendlumWithImageContinuousAction with properties: Mass: 1 RodLength: 1 RodInertia: 0 Gravity: 9.8100 DampingRatio: 0 MaximumTorque: 2 Ts: 0.0500 State: [2×1 double] Q: [2×2 double] R: 1.0000e-03
Интерфейс имеет непрерывный пробел действия, где агент может применить крутящий момент между -2
к 2
Nm.
Получите наблюдение и спецификацию действия от интерфейса среды.
obsInfo = getObservationInfo(env); actInfo = getActionInfo(env);
Зафиксируйте случайный seed генератора для воспроизводимости.
rng(0)
Агент DDPG аппроксимирует долгосрочное вознаграждение, данное наблюдения и действия с помощью представления функции значения критика. Чтобы создать критика, сначала создайте глубокую сверточную нейронную сеть (CNN) с тремя входными параметрами (изображение, угловая скорость и действие) и один вывод. Для получения дополнительной информации о создании представлений смотрите, Создают политику и Представления Функции Значения.
hiddenLayerSize1 = 400; hiddenLayerSize2 = 300; imgPath = [ imageInputLayer(obsInfo(1).Dimension,'Normalization','none','Name',obsInfo(1).Name) convolution2dLayer(10,2,'Name','conv1','Stride',5,'Padding',0) reluLayer('Name','relu1') fullyConnectedLayer(2,'Name','fc1') concatenationLayer(3,2,'Name','cat1') fullyConnectedLayer(hiddenLayerSize1,'Name','fc2') reluLayer('Name','relu2') fullyConnectedLayer(hiddenLayerSize2,'Name','fc3') additionLayer(2,'Name','add') reluLayer('Name','relu3') fullyConnectedLayer(1,'Name','fc4') ]; dthetaPath = [ imageInputLayer(obsInfo(2).Dimension,'Normalization','none','Name',obsInfo(2).Name) fullyConnectedLayer(1,'Name','fc5','BiasLearnRateFactor',0,'Bias',0) ]; actPath =[ imageInputLayer(actInfo(1).Dimension,'Normalization','none','Name','action') fullyConnectedLayer(hiddenLayerSize2,'Name','fc6','BiasLearnRateFactor',0,'Bias',zeros(hiddenLayerSize2,1)) ]; criticNetwork = layerGraph(imgPath); criticNetwork = addLayers(criticNetwork,dthetaPath); criticNetwork = addLayers(criticNetwork,actPath); criticNetwork = connectLayers(criticNetwork,'fc5','cat1/in2'); criticNetwork = connectLayers(criticNetwork,'fc6','add/in2');
Просмотрите конфигурацию сети критика.
figure plot(criticNetwork)
Задайте опции для представления критика с помощью rlRepresentationOptions
.
criticOptions = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);
Не прокомментируйте следующую строку, чтобы использовать графический процессор, чтобы ускорить обучение CNN.
% criticOptions.UseDevice = 'gpu';
Создайте представление критика с помощью заданной нейронной сети и опций. Необходимо также задать информацию о действии и наблюдении для критика, которого вы получаете из интерфейса среды. Для получения дополнительной информации смотрите rlRepresentation
.
critic = rlRepresentation(criticNetwork,criticOptions,'Observation',{'pendImage','angularRate'},obsInfo,'Action',{'action'},actInfo);
Агент DDPG решает который действие взять данный наблюдения с помощью представления агента. Чтобы создать агента, сначала создайте глубокую сверточную нейронную сеть (CNN) с двумя входными параметрами (изображение и угловая скорость) и один вывод (действие).
Создайте агента подобным образом критику.
imgPath = [ imageInputLayer(obsInfo(1).Dimension,'Normalization','none','Name',obsInfo(1).Name) convolution2dLayer(10,2,'Name','conv1','Stride',5,'Padding',0) reluLayer('Name','relu1') fullyConnectedLayer(2,'Name','fc1') concatenationLayer(3,2,'Name','cat1') fullyConnectedLayer(hiddenLayerSize1,'Name','fc2') reluLayer('Name','relu2') fullyConnectedLayer(hiddenLayerSize2,'Name','fc3') reluLayer('Name','relu3') fullyConnectedLayer(1,'Name','fc4') tanhLayer('Name','tanh1') scalingLayer('Name','scale1','Scale',max(actInfo.UpperLimit)) ]; dthetaPath = [ imageInputLayer(obsInfo(2).Dimension,'Normalization','none','Name',obsInfo(2).Name) fullyConnectedLayer(1,'Name','fc5','BiasLearnRateFactor',0,'Bias',0) ]; actorNetwork = layerGraph(imgPath); actorNetwork = addLayers(actorNetwork,dthetaPath); actorNetwork = connectLayers(actorNetwork,'fc5','cat1/in2'); actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);
Не прокомментируйте следующую строку, чтобы использовать графический процессор, чтобы ускорить обучение CNN.
% criticOptions.UseDevice = 'gpu';
Создайте представление агента с помощью заданной нейронной сети и опций.
actor = rlRepresentation(actorNetwork,actorOptions,'Observation',{'pendImage','angularRate'},obsInfo,'Action',{'scale1'},actInfo);
Просмотрите конфигурацию сети агента.
figure plot(actorNetwork)
Чтобы создать агент DDPG, сначала задайте опции агента DDPG с помощью rlDDPGAgentOptions
.
agentOptions = rlDDPGAgentOptions(... 'SampleTime',env.Ts,... 'TargetSmoothFactor',1e-3,... 'ExperienceBufferLength',1e6,... 'DiscountFactor',0.99,... 'MiniBatchSize',128); agentOptions.NoiseOptions.Variance = 0.6; agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;
Затем создайте агент с помощью заданного представления агента, представления критика и опций агента. Для получения дополнительной информации смотрите rlDDPGAgent
.
agent = rlDDPGAgent(actor,critic,agentOptions);
Чтобы обучить агент, сначала задайте опции обучения. В данном примере используйте следующие опции:
Запустите каждое обучение в большинстве эпизодов 5000
с каждым эпизодом, длящимся самое большее 500
временные шаги.
Отобразитесь учебный прогресс в командной строке (установите опцию Verbose
), и в диалоговом окне Episode Manager (установите опцию Plots
).
Остановите обучение, когда агент получит среднее совокупное вознаграждение, больше, чем -1000
более чем пять последовательных эпизодов. На данном этапе агент может быстро сбалансировать маятник в вертикальном положении с помощью минимального усилия по управлению.
Для получения дополнительной информации смотрите rlTrainingOptions
.
maxepisodes = 5000; maxsteps = 400; trainingOptions = rlTrainingOptions(... 'MaxEpisodes',maxepisodes,... 'MaxStepsPerEpisode',maxsteps,... 'Plots','training-progress',... 'StopTrainingCriteria','AverageReward',... 'StopTrainingValue',-740);
Система маятника может визуализироваться с plot
во время обучения или симуляции.
plot(env);
Обучите агент с помощью функции train
. Это - в вычислительном отношении интенсивный процесс, который занимает несколько часов, чтобы завершиться. Чтобы сэкономить время при выполнении этого примера, загрузите предварительно обученный агент установкой doTraining
к false
. Чтобы обучить агент самостоятельно, установите doTraining
на true
.
doTraining = false; if doTraining % Train the agent. trainingStats = train(agent,env,trainingOptions); else % Load pretrained agent for the example. load('SimplePendulumWithImageDDPG.mat','agent') end
Чтобы подтвердить производительность обученного агента, моделируйте его в среде маятника. Для получения дополнительной информации о симуляции агента смотрите rlSimulationOptions
и sim
.
simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);