Упростите представление неопределенного объекта
B = simplify(A) B = simplify(A,'full') B = simplify(A,'basic') B = simplify(A,'class')
B = simplify(A)
выполняет подобные снижению сложности модели методы, чтобы обнаружить и устранить избыточные копии неопределенных элементов. В зависимости от результата класс B
может быть ниже, чем A
. Свойство AutoSimplify
каждого неопределенного элемента в A
управляет тем, какие методы сокращения используются. После сокращения любой неопределенный элемент, который на самом деле не влияет на результат, удален из представления.
B = simplify(A,'full')
переопределения свойство AutoSimplify
всего неопределенного элемента и использование методы сокращения 'full'
.
B = simplify(A,'basic')
переопределения свойство AutoSimplify
всего неопределенного элемента и uses 'basic'
методы сокращения.
B = simplify(A,'class')
не выполняет сокращение. Однако любые неопределенные элементы в A
с нулевыми случаями устраняются, и класс B
может быть ниже, чем класс A
.
Создайте простой umat
с одним неопределенным действительным параметром. Выберите определенные элементы, обратите внимание, что результат остается в классе umat
. Упростите те те же элементы и отметьте тот класс изменения.
p1 = ureal('p1',3,'Range',[2 5]); L = [2 p1]; L(1) UMAT: 1 Rows, 1 Columns L(2) UMAT: 1 Rows, 1 Columns p1: real, nominal = 3, range = [2 5], 1 occurrence simplify(L(1)) ans = 2 simplify(L(2)) Uncertain Real Parameter: Name p1, NominalValue 3, Range [2 5]
Создайте четыре неопределенных действительных параметра, со значением по умолчанию AutoSimplify('basic')
, и задайте высокого уровня полином [1].
m = ureal('m',125000,'Range',[100000 150000]); xcg = ureal('xcg',.23,'Range',[.15 .31]); zcg = ureal('zcg',.105,'Range',[0 .21]); va = ureal('va',80,'Range',[70 90]); cw = simplify(m/(va*va)*va,'full') UMAT: 1 Rows, 1 Columns m: real, nominal = 1.25e+005, range = [100000 150000], 1 occurrence va: real, nominal = 80, range = [70 90], 1 occurrence cw = m/va; fac2 = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ... -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ... -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ... + 4.9*xcg*cw - 2.7*xcg*cw*cw ... +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ... +100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ... +1.12*xcg*zcg + 24.6*cw*zcg ... +.45*xcg*xcg*cw*cw - 46.85 UMAT: 1 Rows, 1 Columns m: real, nominal = 1.25e+005, range = [100000 150000], 18 occurrences va: real, nominal = 80, range = [70 90], 8 occurrences xcg: real, nominal = 0.23, range = [0.15 0.31], 18 occurrences zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence
Результатом старшего полинома является неэффективное представление, включающее 18 копий m
, 8 копий va
, 18 копий xcg
и 1 копию zcg
. Упростите выражение, с помощью алгоритма упрощения 'full'
fac2s = simplify(fac2,'full') UMAT: 1 Rows, 1 Columns m: real, nominal = 1.25e+005, range = [100000 150000], 4 occurrences va: real, nominal = 80, range = [70 90], 4 occurrences xcg: real, nominal = 0.23, range = [0.15 0.31], 2 occurrences zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence
который приводит к намного более экономичному представлению.
Также измените свойство AutoSimplify
каждого параметра к 'full'
прежде, чем сформировать полином.
m.AutoSimplify = 'full'; xcg.AutoSimplify = 'full'; zcg.AutoSimplify = 'full'; va.AutoSimplify = 'full';
Можно сформировать полином, который сразу дает представление низкоуровневое.
cw = m/va; fac2f = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ... -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ... -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ... + 4.9*xcg*cw - 2.7*xcg*cw*cw ... +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ... +100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ... +1.12*xcg*zcg + 24.6*cw*zcg ... +.45*xcg*xcg*cw*cw - 46.85 UMAT: 1 Rows, 1 Columns m: real, nominal = 1.25e+005, range = [100000 150000], 4 occurrences va: real, nominal = 80, range = [70 90], 4 occurrences xcg: real, nominal = 0.23, range = [0.15 0.31], 2 occurrences zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence
Создайте два действительных параметра, da
и dx
, и 2 3 матрица, ABmat
, вовлекая многочленные выражения в два действительных параметра.
da = ureal('da',0,'Range',[-1 1]); dx = ureal('dx',0,'Range',[-1 1]); a11 = -.32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx; a12 = .934 + da*(.0474 - .302*da); a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ... + dx*(9.65 - da*(55.7 + da*177)); a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da); b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx; b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx; ABmat = [a11 a12 b1;a21 a22 b2] UMAT: 2 Rows, 3 Columns da: real, nominal = 0, range = [-1 1], 19 occurrences dx: real, nominal = 0, range = [-1 1], 2 occurrences
Используйте упрощение 'full'
, чтобы уменьшать сложность описания.
ABmatsimp = simplify(ABmat,'full') UMAT: 2 Rows, 3 Columns da: real, nominal = 0, range = [-1 1], 7 occurrences dx: real, nominal = 0, range = [-1 1], 2 occurrences
Также можно установить свойство AutoSimplify
параметра на 'full'
.
da.AutoSimplify = 'full'; dx.AutoSimplify = 'full';
Теперь можно восстановить матрицу
a11 = -.32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx; a12 = .934 + da*(.0474 - .302*da); a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ... + dx*(9.65 - da*(55.7 + da*177)); a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da); b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx; b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx; ABmatFull = [a11 a12 b1;a21 a22 b2] UMAT: 2 Rows, 3 Columns da: real, nominal = 0, range = [-1 1], 7 occurrences dx: real, nominal = 0, range = [-1 1], 2 occurrences
Многомерное снижение сложности модели и теория реализации являются только частично полными теориями. Эвристика, используемая simplify
, является этим - эвристика. Порядок, в котором выражения, включающие неопределенные элементы, создаются, например, распределяющий на сложении и умножении, может влиять на детали представления (т.е. количество случаев ureal
в неопределенной матрице). Возможно, что наивные методы simplify
не могут полностью разрешить эти различия, таким образом, можно быть обеспечен, чтобы работать с “неминимальными” представлениями неопределенных систем.
simplify
использует эвристику наряду с одномерными алгоритмами снижения сложности модели, чтобы частично уменьшать размерность представления неопределенной матрицы или системы.
[1] Varga, А. и Г. Лоой, “Символьные и числовые программные инструменты для основанного на LFT моделирования неуверенности низкоуровневого”, IEEE Международный Симпозиум по Компьютеру помог Проекту Системы управления, 1999, стр 5-11.
[2] Белькастро, C.M., К.Б. Лим и Э.А. Морелли, “Компьютер помог моделированию неуверенности для нелинейной зависимой параметром системной Второй части: пример F-16”, IEEE Международный Симпозиум по Компьютеру помог Проекту Системы управления, 1999, стр 17-23.