pwelch

Степень валлийцев спектральная оценка плотности

Синтаксис

pxx = pwelch(x)
pxx = pwelch(x,window)
pxx = pwelch(x,window,noverlap)
pxx = pwelch(x,window,noverlap,nfft)
[pxx,w] = pwelch(___)
[pxx,f] = pwelch(___,fs)
[pxx,w] = pwelch(x,window,noverlap,w)
[pxx,f] = pwelch(x,window,noverlap,f,fs)
[___] = pwelch(x,window,___,freqrange)
[___] = pwelch(x,window,___,trace)
[___,pxxc] = pwelch(___,'ConfidenceLevel',probability)
[___] = pwelch(___,spectrumtype)
pwelch(___)

Описание

пример

pxx = pwelch(x) возвращает оценку степени спектральной плотности (PSD), pxx, входного сигнала, x, найденного использованием перекрытого средства оценки усреднения сегмента валлийцев. Когда x является вектором, он обработан как один канал. Когда x является матрицей, PSD вычисляется независимо для каждого столбца и хранится в соответствующем столбце pxx. Если x с действительным знаком, pxx является односторонней оценкой PSD. Если x с комплексным знаком, pxx является двухсторонней оценкой PSD. По умолчанию x разделен на самые длинные сегменты, чтобы получить как близко к, но не превысить 8 сегментов с 50%-м перекрытием. Каждый сегмент является оконным с Окном Хэмминга. Измененные периодограммы усреднены, чтобы получить оценку PSD. Если вы не можете разделить длину x точно в целое число сегментов с 50%-м перекрытием, x является усеченным соответственно.

пример

pxx = pwelch(x,window) использует входной вектор или целое число, window, чтобы разделить сигнал на сегменты. Если window является вектором, pwelch делит сигнал на сегменты, равные в длине к длине window. Измененные периодограммы вычисляются с помощью сегментов сигнала, умноженных на вектор, window. Если window является целым числом, сигнал разделен на сегменты длины window. Измененные периодограммы вычисляются с помощью Окна Хэмминга длины window.

пример

pxx = pwelch(x,window,noverlap) использование выборки noverlap перекрытия от сегмента до сегмента. noverlap должен быть положительным целым числом, меньшим, чем window, если window является целым числом. noverlap должен быть положительным целым числом меньше, чем длина window, если window является вектором. Если вы не задаете noverlap или задаете noverlap как пустой, количество по умолчанию перекрытых выборок составляет 50% длины окна.

пример

pxx = pwelch(x,window,noverlap,nfft) указывает, что количество дискретного преобразования Фурье (DFT) указывает, чтобы использовать в оценке PSD. nfft по умолчанию является большими из 256 или следующей степенью 2 больших, чем длина сегментов.

[pxx,w] = pwelch(___) возвращает нормированный вектор частоты, w. Если pxx является односторонней оценкой PSD, w охватывает интервал [0, π], если nfft даже и [0, π), если nfft нечетен. Если pxx является двухсторонней оценкой PSD, w охватывает интервал [0,2π).

пример

[pxx,f] = pwelch(___,fs) возвращает вектор частоты, f, в циклах в единицу времени. Частота дискретизации, fs, является количеством выборок в единицу времени. Если модуль времени является секундами, то f находится в циклах/секунда (Гц). Для сигналов с действительным знаком f охватывает интервал [0, fs/2], когда nfft даже и [0, fs/2), когда nfft нечетен. Для сигналов с комплексным знаком f охватывает интервал [0, fs). fs должен быть пятым входом к pwelch. Чтобы ввести частоту дискретизации и все еще использовать значения по умолчанию предыдущих дополнительных аргументов, задайте эти аргументы как пустые, [].

[pxx,w] = pwelch(x,window,noverlap,w) возвращает двухсторонние валлийские оценки PSD на нормированных частотах, заданных в векторе, w. Векторный w должен содержать по крайней мере два элемента, потому что в противном случае функция интерпретирует его как nfft.

[pxx,f] = pwelch(x,window,noverlap,f,fs) возвращает двухсторонние валлийские оценки PSD на частотах, заданных в векторе, f. Векторный f должен содержать по крайней мере два элемента, потому что в противном случае функция интерпретирует его как nfft. Частоты в f находятся в циклах в единицу времени. Частота дискретизации, fs, является количеством выборок в единицу времени. Если модуль времени является секундами, то f находится в циклах/секунда (Гц).

пример

[___] = pwelch(x,window,___,freqrange) возвращает валлийскую оценку PSD по частотному диапазону, заданному freqrange. Допустимые опции для freqrange: 'onesided', 'twosided' или 'centered'.

пример

[___] = pwelch(x,window,___,trace) возвращает оценку спектра хранения максимум, если trace задан как 'maxhold' и возвращает оценку спектра хранения минимум, если trace задан как 'minhold'.

пример

[___,pxxc] = pwelch(___,'ConfidenceLevel',probability) возвращает probability × 100% доверительных интервалов для оценки PSD в pxxc.

пример

[___] = pwelch(___,spectrumtype) возвращает оценку PSD, если spectrumtype задан как 'psd' и возвращает спектр мощности, если spectrumtype задан как 'power'.

пример

pwelch(___) без выходных аргументов строит валлийскую оценку PSD в окне текущей фигуры.

Примеры

свернуть все

Получите валлийскую оценку PSD входного сигнала, состоящего из синусоиды дискретного времени с угловой частотой π/4 рад/выборка с дополнением N(0,1) белый шум.

Создайте синусоиду с угловой частотой π/4 рад/выборка с дополнением N(0,1) белый шум. Сбросьте генератор случайных чисел для восстанавливаемых результатов. Сигнал имеет длину Nx=320 выборки.

rng default

n = 0:319;
x = cos(pi/4*n)+randn(size(n));

Получите валлийскую оценку PSD с помощью Окна Хэмминга по умолчанию и длины ДПФ. Длина сегмента по умолчанию является 71 выборкой, и длина ДПФ является 256 точками, приводящими к разрешению частоты 2π/256 рад/выборка. Поскольку сигнал с действительным знаком, периодограмма является односторонней и существуют точки 256/2+1. Постройте валлийскую оценку PSD.

pxx = pwelch(x);

pwelch(x)

Повторите вычисление.

  • Разделите сигнал на разделы длины nsc=Nx/4.5. Это действие эквивалентно делению сигнала в самые длинные сегменты, чтобы получить как близко к, но не превысить 8 сегментов с 50%-м перекрытием.

  • Окно разделы с помощью Окна Хэмминга.

  • Задайте 50%-е перекрытие между непрерывными разделами

  • Чтобы вычислить БПФ, использовать max (256,2p) точки, где p=журнал2nsc.

Проверьте, что два подхода дают идентичные результаты.

Nx = length(x);
nsc = floor(Nx/4.5);
nov = floor(nsc/2);
nff = max(256,2^nextpow2(nsc));

t = pwelch(x,hamming(nsc),nov,nff);

maxerr = max(abs(abs(t(:))-abs(pxx(:))))
maxerr = 0

Разделите сигнал на 8 разделов равной длины с 50%-м перекрытием между разделами. Задайте ту же длину БПФ как на предыдущем шаге. Вычислите кратковременное преобразование Фурье и проверьте, что оно дает тот же результат как предыдущие две процедуры.

ns = 8;
ov = 0.5;
lsc = floor(Nx/(ns-(ns-1)*ov));

t = pwelch(x,lsc,floor(ov*lsc),nff);

maxerr = max(abs(abs(t(:))-abs(pxx(:))))
maxerr = 0

Получите валлийскую оценку PSD входного сигнала, состоящего из синусоиды дискретного времени с угловой частотой π/3 рад/выборка с дополнением N(0,1) белый шум.

Создайте синусоиду с угловой частотой π/3 рад/выборка с дополнением N(0,1) белый шум. Сбросьте генератор случайных чисел для восстанавливаемых результатов. Сигнал имеет 512 выборок.

rng default

n = 0:511;
x = cos(pi/3*n)+randn(size(n));

Получите валлийскую оценку PSD, делящую сигнал на сегменты 132 выборки в длине. Сегменты сигнала умножаются на Окно Хэмминга 132 выборки в длине. Количество перекрытых выборок не задано, таким образом, оно установлено в 132/2 = 66. Длина ДПФ является 256 точками, приводя к разрешению частоты 2π/256 рад/выборка. Поскольку сигнал с действительным знаком, оценка PSD является односторонней и существуют 256/2+1 = 129 точек. Постройте PSD как функцию нормированной частоты.

segmentLength = 132;
[pxx,w] = pwelch(x,segmentLength);

plot(w/pi,10*log10(pxx))
xlabel('\omega / \pi')

Получите валлийскую оценку PSD входного сигнала, состоящего из синусоиды дискретного времени с угловой частотой π/4 рад/выборка с дополнением N(0,1) белый шум.

Создайте синусоиду с угловой частотой π/4 рад/выборка с дополнением N(0,1) белый шум. Сбросьте генератор случайных чисел для восстанавливаемых результатов. Сигнал является 320 выборками в длине.

rng default

n = 0:319;
x = cos(pi/4*n)+randn(size(n));

Получите валлийскую оценку PSD, делящую сигнал на сегменты 100 выборок в длине. Сегменты сигнала умножаются на Окно Хэмминга 100 выборок в длине. Количество перекрытых выборок равняется 25. Длина ДПФ является 256 точками, приводящими к разрешению частоты 2π/256 рад/выборка. Поскольку сигнал с действительным знаком, оценка PSD является односторонней и существуют точки 256/2+1.

segmentLength = 100;
noverlap = 25;
pxx = pwelch(x,segmentLength,noverlap);

plot(10*log10(pxx))

Получите валлийскую оценку PSD входного сигнала, состоящего из синусоиды дискретного времени с угловой частотой π/4 рад/выборка с дополнением N(0,1) белый шум.

Создайте синусоиду с угловой частотой π/4 рад/выборка с дополнением N(0,1) белый шум. Сбросьте генератор случайных чисел для восстанавливаемых результатов. Сигнал является 320 выборками в длине.

rng default

n = 0:319;
x = cos(pi/4*n) + randn(size(n));

Получите валлийскую оценку PSD, делящую сигнал на сегменты 100 выборок в длине. Используйте перекрытие по умолчанию 50%. Задайте длину ДПФ, чтобы быть 640 точками так, чтобы частота π/4 рад/выборка соответствует интервалу ДПФ (интервал 81). Поскольку сигнал с действительным знаком, оценка PSD является односторонней и существуют точки 640/2+1.

segmentLength = 100;
nfft = 640;
pxx = pwelch(x,segmentLength,[],nfft);

plot(10*log10(pxx))
xlabel('rad/sample')
ylabel('dB / (rad/sample)')

Создайте сигнал, состоящий из синусоиды на 100 Гц в дополнении N (0,1) белый шум. Сбросьте генератор случайных чисел для восстанавливаемых результатов. Частота дискретизации составляет 1 кГц, и сигнал составляет 5 секунд в длительности.

rng default

fs = 1000;
t = 0:1/fs:5-1/fs;
x = cos(2*pi*100*t) + randn(size(t));

Получите перекрытый сегмент валлийцев, составляющий в среднем оценку PSD предыдущего сигнала. Используйте продолжительность сегмента 500 выборок с 300 перекрытыми выборками. Используйте 500 точек ДПФ так, чтобы падения на 100 Гц непосредственно на интервале ДПФ. Введите частоту дискретизации, чтобы вывести вектор частот в Гц. Постройте результат.

[pxx,f] = pwelch(x,500,300,500,fs);

plot(f,10*log10(pxx))

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

Создайте сигнал, состоящий из трех шумных синусоид и щебета, выбранного на уровне 200 кГц в течение 0,1 секунд. Частоты синусоид составляют 1 кГц, 10 кГц и 20 кГц. Синусоиды имеют различные амплитуды и уровень шума. Бесшумный щебет имеет частоту, которая запускается на уровне 20 кГц и увеличивается линейно до 30 кГц во время выборки.

Fs = 200e3; 
Fc = [1 10 20]'*1e3; 
Ns = 0.1*Fs;

t = (0:Ns-1)/Fs;
x = [1 1/10 10]*sin(2*pi*Fc*t)+[1/200 1/2000 1/20]*randn(3,Ns);
x = x+chirp(t,20e3,t(end),30e3);

Вычислите валлийскую оценку PSD и хранение максимум и содержите минимум спектры сигнала. Постройте график результатов.

[pxx,f] = pwelch(x,[],[],[],Fs);
pmax = pwelch(x,[],[],[],Fs,'maxhold');
pmin = pwelch(x,[],[],[],Fs,'minhold');

plot(f,pow2db(pxx))
hold on
plot(f,pow2db([pmax pmin]),':')
hold off
xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')
legend('pwelch','maxhold','minhold')

Повторите процедуру, на этот раз вычислив сосредоточенные оценки спектра мощности.

[pxx,f] = pwelch(x,[],[],[],Fs,'centered','power');
pmax = pwelch(x,[],[],[],Fs,'maxhold','centered','power');
pmin = pwelch(x,[],[],[],Fs,'minhold','centered','power');

plot(f,pow2db(pxx))
hold on
plot(f,pow2db([pmax pmin]),':')
hold off
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
legend('pwelch','maxhold','minhold')

Этот пример иллюстрирует использование доверительных границ с Перекрытым усреднением сегмента валлийцев (WOSA) оценка PSD. В то время как не необходимое условие для статистического значения, частоты в оценке валлийцев, где более низкая доверительная граница превышает верхнюю доверительную границу для окружения оценок PSD ясно, указывают на значительные колебания во временных рядах.

Создайте сигнал, состоящий из суперпозиции синусоид на 150 Гц и на 100 Гц в аддитивном белом N (0,1) шум. Амплитуда этих двух синусоид равняется 1. Частота дискретизации составляет 1 кГц. Сбросьте генератор случайных чисел для восстанавливаемых результатов.

rng default
fs = 1000;
t = 0:1/fs:1-1/fs;
x = cos(2*pi*100*t)+sin(2*pi*150*t)+randn(size(t));

Получите оценку WOSA с 95%-доверительными-границами. Установите длину сегмента, равную 200, и перекройте сегменты на 50% (100 выборок). Постройте WOSA оценка PSD наряду с доверительным интервалом и увеличьте масштаб видимой области частоты около 100 и 150 Гц.

L = 200;
noverlap = 100;
[pxx,f,pxxc] = pwelch(x,hamming(L),noverlap,200,fs,...
    'ConfidenceLevel',0.95);

plot(f,10*log10(pxx))
hold on
plot(f,10*log10(pxxc),'-.')
hold off

xlim([25 250])
xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')
title('Welch Estimate with 95%-Confidence Bounds')

Более низкая доверительная граница в мгновенной близости 100 и 150 Гц значительно выше верхней доверительной границы вне близости 100 и 150 Гц.

Создайте сигнал, состоящий из синусоиды на 100 Гц в дополнении N(0,1/4) белый шум. Сбросьте генератор случайных чисел для восстанавливаемых результатов. Частота дискретизации составляет 1 кГц, и сигнал составляет 5 секунд в длительности.

rng default

fs = 1000;
t = 0:1/fs:5-1/fs;

noisevar = 1/4;
x = cos(2*pi*100*t)+sqrt(noisevar)*randn(size(t));

Получите сосредоточенный DC спектр мощности с помощью метода валлийцев. Используйте продолжительность сегмента 500 выборок с 300 перекрытыми выборками и длину ДПФ 500 точек. Постройте результат.

[pxx,f] = pwelch(x,500,300,500,fs,'centered','power');

plot(f,10*log10(pxx))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
grid

Вы видите, что степень в-100 и 100 Гц близко к ожидаемой степени 1/4 для синусоиды с действительным знаком с амплитудой 1. Отклонение от 1/4 происходит из-за эффекта аддитивного шума.

Сгенерируйте 1 024 выборки многоканального сигнала, состоящего из трех синусоид в дополнении N(0,1) белый Гауссов шум. Частоты синусоид π/2, π/3, и π/4 рад/выборка. Оцените PSD сигнала с помощью метода валлийцев и постройте его.

N = 1024;
n = 0:N-1;

w = pi./[2;3;4];
x = cos(w*n)' + randn(length(n),3);

pwelch(x)

Входные параметры

свернуть все

Входной сигнал, заданный как строка или вектор-столбец, или как матрица. Если x является матрицей, то ее столбцы обработаны как независимые каналы.

Пример: cos(pi/4*(0:159))+randn(1,160) является одноканальным сигналом вектора - строки.

Пример: cos(pi./[4;2]*(0:159))'+randn(160,2) является двухканальным сигналом.

Типы данных: single | double
Поддержка комплексного числа: Да

Окно, заданное как строка или вектор-столбец или целое число. Если window является вектором, pwelch делит x на перекрывающиеся сегменты длины, равной длине window, и затем умножает каждый сегмент сигнала с вектором, заданным в window. Если window является целым числом, pwelch разделен на сегменты длины, равной целочисленному значению, и Окно Хэмминга равной длины используется. Если длина x не может быть разделена точно в целое число сегментов с количеством noverlap перекрывающихся выборок, x является усеченным соответственно. Если вы задаете window как пустой, Окно Хэмминга по умолчанию используется, чтобы получить восемь сегментов x с noverlap перекрывающиеся выборки.

Типы данных: single | double

Количество перекрытых выборок, заданных как положительное целое число, меньшее, чем длина window. Если вы не используете noverlap или задаете noverlap как пустой, значение используется, чтобы получить 50%-е перекрытие между сегментами.

Количество точек ДПФ, заданных как положительное целое число. Для входного сигнала с действительным знаком, x, оценки PSD, pxx имеет длину (nfft/2 + 1), если nfft даже, и (nfft + 1)/2, если nfft нечетен. Для входного сигнала с комплексным знаком, x, оценка PSD всегда имеет длину nfft. Если nfft задан как пустой, nfft по умолчанию используется.

Если nfft больше, чем длина сегмента, данные дополнены нулем. Если nfft является меньше, чем длина сегмента, сегмент перенесен с помощью datawrap, чтобы сделать длину равной nfft.

Типы данных: single | double

Частота дискретизации, заданная как положительная скалярная величина. Частота дискретизации является количеством выборок в единицу времени. Если модуль времени является секундами, то частота дискретизации имеет модули Гц.

Нормированные частоты, заданные как строка или вектор-столбец по крайней мере с двумя элементами. Нормированные частоты находятся в раде/выборке.

Пример: w = [pi/4 pi/2]

Типы данных: double

Частоты, заданные как строка или вектор-столбец по крайней мере с двумя элементами. Частоты находятся в циклах в единицу времени. Единица времени задана частотой дискретизации, fs. Если fs имеет модули выборок/секунда, то f имеет модули Гц.

Пример: fs = 1000; f = [100 200]

Типы данных: double

Частотный диапазон для оценки PSD, заданной как та 'onesided', 'twosided' или 'centered'. Значением по умолчанию является 'onesided' для сигналов с действительным знаком и 'twosided' для сигналов с комплексным знаком. Частотные диапазоны, соответствующие каждой опции,

  • 'onesided' — возвращает одностороннюю оценку PSD входного сигнала с действительным знаком, x. Если nfft даже, pxx имеет длину nfft/2 + 1 и вычисляется на интервале [0, π] рад/выборка. Если nfft нечетен, длина pxx (nfft + 1)/2, и интервал [0, π), рад/выборка. Когда fs опционально задан, соответствующие интервалы являются [0, fs/2] циклами/единицей времени и [0, fs/2), циклы/единица времени для четной и нечетной длины nfft соответственно.

  • 'twosided' — возвращает двухстороннюю оценку PSD или для входа с комплексным знаком или для с действительным знаком, x. В этом случае pxx имеет длину nfft и вычисляется на интервале [0,2π), рад/выборка. Когда fs опционально задан, интервал [0, fs), циклы/единица времени.

  • 'centered' — возвращает двухстороннюю оценку PSD в центре или для входа с комплексным знаком или для с действительным знаком, x. В этом случае pxx имеет длину nfft и вычисляется на интервале (–π, π] рад/выборка для даже длины nfft и (–π, π) рад/выборка для нечетной длины nfft. Когда fs опционально задан, соответствующие интервалы (–fs/2, fs/2] циклы/единица времени и (–fs/2, fs/2) циклы/единица времени для четной и нечетной длины nfft соответственно.

Масштабирование спектра мощности, заданное как один из 'psd' или 'power'. Исключение spectrumtype или определение 'psd', возвращают степень спектральная плотность. Определение 'power' масштабирует каждую оценку PSD эквивалентной шумовой пропускной способностью окна. Используйте опцию 'power', чтобы получить оценку степени на каждой частоте.

Проследите режим, заданный как один из 'mean', 'maxhold' или 'minhold'. Значением по умолчанию является 'mean'.

  • среднее значение возвращает валлийскую оценку спектра каждого входного канала. pwelch вычисляет валлийскую оценку спектра в каждом интервале частоты путем усреднения оценок спектра мощности всех сегментов.

  • 'maxhold' — возвращает спектр хранения максимум каждого входного канала. pwelch вычисляет спектр хранения максимум в каждом интервале частоты путем хранения максимального значения среди оценок спектра мощности всех сегментов.

  • 'minhold' — возвращает спектр хранения минимум каждого входного канала. pwelch вычисляет спектр хранения минимум в каждом интервале частоты путем хранения минимального значения среди оценок спектра мощности всех сегментов.

Вероятность покрытия для истинного PSD, заданного как скаляр в области значений (0,1). Вывод, pxxc, содержит нижние и верхние границы probability × 100%-я оценка интервала для истинного PSD.

Выходные аргументы

свернуть все

Оценка PSD, возвращенная как неотрицательный вектор-столбец с действительным знаком или матрица. Каждый столбец pxx является оценкой PSD соответствующего столбца x. Модули оценки PSD находятся в единицах значения в квадрате данных временных рядов на модульную частоту. Например, если входные данные находятся в вольтах, оценка PSD находится в модулях вольт в квадрате на модульную частоту. Какое-то время ряд в вольтах, если вы принимаете сопротивление 1 Ω и задаете частоту дискретизации в герц, оценка PSD, находится в ваттах на герц.

Типы данных: single | double

Нормированные частоты, возвращенные как вектор-столбец с действительным знаком. Если pxx является односторонней оценкой PSD, w охватывает интервал [0, π], если nfft даже и [0, π), если nfft нечетен. Если pxx является двухсторонней оценкой PSD, w охватывает интервал [0,2π). Для сосредоточенной DC оценки PSD w охватывает интервал (–π, π] для даже nfft и (–π, π) для нечетного nfft.

Типы данных: double

Циклические частоты, возвращенные как вектор-столбец с действительным знаком. Для односторонней оценки PSD f охватывает интервал [0, fs/2], когда nfft даже и [0, fs/2), когда nfft нечетен. Для двухсторонней оценки PSD f охватывает интервал [0, fs). Для сосредоточенной DC оценки PSD f охватывает интервал (–fs/2, fs/2] циклы/единица времени для даже длины nfft и (–fs/2, fs/2) циклы/единица времени для нечетной длины nfft.

Типы данных: double | single

Доверительные границы, возвращенные как матрица с элементами с действительным знаком. Размер строки матрицы равен длине оценки PSD, pxx. pxxc имеет вдвое больше столбцов как pxx. Нечетные столбцы содержат нижние границы доверительных интервалов, и четные столбцы содержат верхние границы. Таким образом pxxc(m,2*n-1) является более низкой доверительной границей, и pxxc(m,2*n) является верхней доверительной границей, соответствующей оценке pxx(m,n). Вероятность покрытия доверительных интервалов определяется значением входа probability.

Типы данных: single | double

Больше о

свернуть все

Перекрытый сегмент валлийцев, составляющий в среднем спектральную оценку

Периодограмма не является сопоставимым средством оценки истинной степени спектральная плотность широкого смысла стационарный процесс. Метод валлийцев, чтобы уменьшать отклонение периодограммы повреждает временные ряды в сегменты, обычно накладываясь.

Метод валлийцев вычисляет измененную периодограмму для каждого сегмента и затем составляет в среднем эти оценки, чтобы произвести оценку степени спектральная плотность. Поскольку процесс является широким смыслом, метод стационарных и валлийцев использует оценки PSD различных сегментов временных рядов, измененные периодограммы представляют приблизительно некоррелированые оценки истинного PSD, и усреднение уменьшает изменчивость.

Сегменты обычно умножаются на функцию окна, такую как Окно Хэмминга, так, чтобы метод валлийцев составил усреднение измененных периодограмм. Поскольку сегменты обычно накладываются, значения данных вначале и конец сегмента, заостренного окном в одном сегменте, происходят далеко от концов смежных сегментов. Это принимает меры против потери информации, вызванной работой с окнами.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Представлено до R2006a

Для просмотра документации необходимо авторизоваться на сайте