поле

Поля классификации для Гауссовой модели классификации ядер

Синтаксис

m = margin(Mdl,X,Y)

Описание

пример

m = margin(Mdl,X,Y) возвращает поля классификации для бинарной Гауссовой модели Mdl классификации ядер с помощью данных о предикторе в X и соответствующих меток класса в Y.

Примеры

свернуть все

Загрузите набор данных ionosphere. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, или плохой ('b') или хороший ('g').

load ionosphere

Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 30%-ю выборку затяжки для набора тестов.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.30);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Обучите бинарную модель классификации ядер использование набора обучающих данных.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Оцените поля набора обучающих данных и поля набора тестов.

mTrain = margin(Mdl,X(trainingInds,:),Y(trainingInds));
mTest = margin(Mdl,X(testInds,:),Y(testInds));

Постройте оба набора полей с помощью диаграмм.

boxplot([mTrain; mTest],[zeros(size(mTrain,1),1); ones(size(mTest,1),1)], ...
    'Labels',{'Training set','Test set'});
title('Training-Set and Test-Set Margins')

Граничное распределение набора обучающих данных расположено выше, чем граничное распределение набора тестов.

Выполните выбор функции путем сравнения полей набора тестов от многоуровневых моделей. Базирующийся только на этом критерии, классификатор с большими полями является лучшим классификатором.

Загрузите набор данных ionosphere. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, или плохой ('b') или хороший ('g').

load ionosphere

Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 15%-ю выборку затяжки для набора тестов.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Случайным образом выберите 10% переменных прогноза.

p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.1*p));

Обучите две бинарных модели классификации ядер: тот, который использует все предикторы и тот, который использует случайные 10%.

Mdl = fitckernel(XTrain,YTrain);
PMdl = fitckernel(XTrain(:,idxPart),YTrain);

Mdl и PMdl являются моделями ClassificationKernel.

Оцените поля набора тестов для каждого классификатора.

fullMargins = margin(Mdl,XTest,YTest);
partMargins = margin(PMdl,XTest(:,idxPart),YTest);

Постройте распределение граничных наборов с помощью диаграмм.

boxplot([fullMargins partMargins], ...
    'Labels',{'All Predictors','10% of the Predictors'});
title('Test-Set Margins')

Граничное распределение PMdl расположено выше, чем граничное распределение Mdl. Поэтому модель PMdl является лучшим классификатором.

Входные параметры

свернуть все

Бинарная модель классификации ядер, заданная как объект модели ClassificationKernel. Можно создать объект модели ClassificationKernel с помощью fitckernel.

Данные о предикторе, заданные как n-by-p числовая матрица, где n является количеством наблюдений и p, являются количеством предикторов, используемых, чтобы обучить Mdl.

Длина Y и количество наблюдений в X должны быть равными.

Типы данных: single | double

Метки класса, заданные как категориальное, символ, или массив строк, логический или числовой вектор или массив ячеек из символьных векторов.

  • Тип данных Y должен совпасть с типом данных Mdl.ClassNames. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.)

  • Отличные классы в Y должны быть подмножеством Mdl.ClassNames.

  • Если Y является символьным массивом, то каждый элемент должен соответствовать одной строке массива.

  • Длина Y и количество наблюдений в X должны быть равными.

Типы данных: categorical | char | string | logical | single | double | cell

Выходные аргументы

свернуть все

Поля классификации, возвращенные как n-by-1 числовой вектор-столбец, где n является количеством наблюдений в X.

Больше о

свернуть все

Поле классификации

classification margin для бинарной классификации, для каждого наблюдения, различия между счетом классификации к истинному классу и счетом классификации к ложному классу.

Программное обеспечение задает поле классификации для бинарной классификации как

m=2yf(x).

x является наблюдением. Если истинная метка x является положительным классом, то y равняется 1, и –1 в противном случае. f (x) является счетом классификации положительных классов к наблюдению x. Поле классификации обычно задается как m = y f (x).

Если поля находятся в той же шкале, то они служат мерой по уверенности классификации. Среди нескольких классификаторов те, которые приводят к большим полям, лучше.

Счет классификации

Для моделей классификации ядер, необработанного classification score для классификации наблюдения x, вектор - строка, в положительный класс задан

f(x)=T(x)β+b.

  • T(·) преобразование наблюдения для расширения функции.

  • β является предполагаемым вектор-столбцом коэффициентов.

  • b является предполагаемым скалярным смещением.

Необработанный счет классификации к классификации x в отрицательный класс является f (x). Программное обеспечение классифицирует наблюдения в класс, который приводит к положительному счету.

Если модель классификации ядер состоит из учеников логистической регрессии, то программное обеспечение применяет преобразование счета 'logit' к необработанным очкам классификации (см. ScoreTransform).

Расширенные возможности

Смотрите также

| | |

Введенный в R2017b

Для просмотра документации необходимо авторизоваться на сайте