ClassificationKernel

Гауссова модель классификации ядер использование случайного расширения функции

Описание

ClassificationKernel является обученным объектом модели для бинарной Гауссовой модели классификации ядер использование случайного расширения функции. ClassificationKernel более практичен для больших применений данных, которые имеют большие наборы обучающих данных, но могут также быть применены к меньшим наборам данных, которые умещаются в памяти.

В отличие от других моделей классификации, и для экономичного использования памяти, объекты модели ClassificationKernel не хранят данные тренировки. Однако они действительно хранят информацию, такую как количество размерностей расширенного пробела, масштабного коэффициента ядра, вероятностей предшествующего класса и силы регуляризации.

Можно использовать обученные модели ClassificationKernel, чтобы продолжить обучение с помощью данных тренировки и предсказать метки или музыку классификации к новым данным. Для получения дополнительной информации смотрите resume и predict.

Создание

Создайте объект ClassificationKernel с помощью функции fitckernel. Эти функциональные данные о картах в низком мерном пространстве в высокое мерное пространство, затем приспосабливает линейную модель в высоком мерном пространстве путем минимизации упорядоченной целевой функции. Линейная модель в высоком мерном пространстве эквивалентна модели с Гауссовым ядром в низком мерном пространстве. Доступные линейные модели классификации включают упорядоченную машину вектора поддержки (SVM) и модели логистической регрессии.

Свойства

развернуть все

Свойства классификации ядер

Линейный тип модели классификации, заданный как 'logistic' или 'svm'.

В следующей таблице, f(x)=T(x)β+b.

  • x является наблюдением (вектор - строка) от переменных прогноза p.

  • T(·) преобразование наблюдения (вектор - строка) для расширения функции. T (x) сопоставляет x в p к высокому мерному пространству (m).

  • β является вектором коэффициентов m.

  • b является скалярным смещением.

ЗначениеАлгоритмФункция потерьЗначение FittedLoss
'logistic'Логистическая регрессия(Логистическое) отклонение: [y,f(x)]=журнал{1+exp[yf(x)]}'logit'
'svm'Поддержите векторную машинуСтержень: [y,f(x)]=max [0,1yf(x)]'hinge'

Количество размерностей расширенного пробела, заданного как положительное целое число.

Типы данных: single | double

Масштабный коэффициент ядра, заданный как положительная скалярная величина.

Типы данных: char | single | double

Ограничение поля, заданное как положительная скалярная величина.

Типы данных: double | single

Сила срока регуляризации, заданная как неотрицательный скаляр.

Типы данных: single | double

Функция потерь раньше соответствовала линейной модели, заданной как 'hinge' или 'logit'.

ЗначениеАлгоритмФункция потерьЗначение Learner
'hinge'Поддержите векторную машинуСтержень: [y,f(x)]=max [0,1yf(x)]'svm'
'logit'Логистическая регрессия(Логистическое) отклонение: [y,f(x)]=журнал{1+exp[yf(x)]}'logistic'

Тип штрафа сложности, который всегда является 'ridge (L2)'.

Программное обеспечение составляет целевую функцию для минимизации от суммы средней функции потерь (см. FittedLoss), и срок регуляризации, гребень (L 2) штраф.

Гребень (L 2) штраф

λ2j=1pβj2

где λ задает силу срока регуляризации (см. Lambda). Программное обеспечение исключает срок смещения (β 0) от штрафа регуляризации.

Другие свойства классификации

Индексы категориальных предикторов, значение которых всегда пусто ([]), потому что модель ClassificationKernel не поддерживает категориальные предикторы.

Уникальные метки класса используются в обучении, заданном как категориальное или символьный массив, логический или числовой вектор или массив ячеек из символьных векторов. ClassNames имеет совпадающий тип данных, когда класс маркирует Y. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.) ClassNames также определяет порядок класса.

Типы данных: categorical | char | logical | single | double | cell

Это свойство доступно только для чтения.

Затраты Misclassification, заданные как квадратная числовая матрица. Cost имеет строки и столбцы K, где K является количеством классов.

Cost(i,j) является стоимостью классификации точки в класс j, если его истинным классом является i. Порядок строк и столбцов Cost соответствует порядку классов в ClassNames.

Типы данных: double

Параметры использовали для обучения модель ClassificationKernel, заданную как структура.

Доступ к полям ModelParameters с помощью записи через точку. Например, получите доступ к относительному допуску на линейных коэффициентах и сроке смещения при помощи Mdl.ModelParameters.BetaTolerance.

Типы данных: struct

Предиктор называет в порядке их внешнего вида в данных о предикторе X, заданный как массив ячеек из символьных векторов. Длина PredictorNames равна количеству столбцов в X.

Типы данных: cell

Расширенные имена предиктора, заданные как массив ячеек из символьных векторов.

Поскольку модель ClassificationKernel не поддерживает категориальные предикторы, ExpandedPredictorNames и PredictorNames равны.

Типы данных: cell

Это свойство доступно только для чтения.

Предшествующие вероятности класса, заданные как числовой вектор. Prior имеет столько же элементов сколько классы в ClassNames, и порядок элементов соответствует элементам ClassNames.

Типы данных: double

Выиграйте функцию преобразования, чтобы примениться к предсказанным очкам, заданным как имя функции или указатель на функцию.

Для моделей классификации ядер и перед преобразованием счета, предсказанным счетом классификации к наблюдению x (вектор - строка) f(x)=T(x)β+b.

  • T(·) преобразование наблюдения для расширения функции.

  • β является предполагаемым вектор-столбцом коэффициентов.

  • b является предполагаемым скалярным смещением.

Изменить функцию преобразования счета на function, например, запись через точку использования.

  • Для встроенной функции введите этот код и замените function на значение из таблицы.

    Mdl.ScoreTransform = 'function';

    ЗначениеОписание
    'doublelogit'1/(1 + e –2x)
    'invlogit'журнал (x / (1 – x))
    'ismax'Устанавливает счет к классу с самым большим счетом к 1 и устанавливает музыку ко всем другим классам к 0
    'logit'1/(1 + e x)
    'none' или 'identity'x (никакое преобразование)
    'sign'– 1 для x <0
    0 для x = 0
    1 для x> 0
    'symmetric'2x – 1
    'symmetricismax'Устанавливает счет к классу с самым большим счетом к 1 и устанавливает музыку ко всем другим классам к –1
    'symmetriclogit'2/(1 + e x) – 1

  • Для функции MATLAB® или функции, которую вы задаете, вводят ее указатель на функцию.

    Mdl.ScoreTransform = @function;

    function должен принять матрицу исходной музыки к каждому классу, и затем возвратить матричное представление одного размера преобразованной музыки к каждому классу.

Типы данных: char | function_handle

Имя переменной отклика, заданное как вектор символов.

Типы данных: char

Функции объекта

edgeРебро классификации для Гауссовой модели классификации ядер
lossПотеря классификации для Гауссовой модели классификации ядер
marginПоля классификации для Гауссовой модели классификации ядер
predictПредскажите метки для Гауссовой модели классификации ядер
resumeВозобновите обучение Гауссовой модели классификации ядер

Примеры

свернуть все

Обучите бинарную модель классификации ядер, использующую SVM.

Загрузите набор данных ionosphere. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, или плохой ('b') или хороший ('g').

load ionosphere
[n,p] = size(X)
n = 351
p = 34
resp = unique(Y)
resp = 2x1 cell array
    {'b'}
    {'g'}

Обучите бинарную модель классификации ядер, которая идентифицирует, плох ли радарный возврат ('b') или хорош ('g'). Извлеките подходящие сводные данные, чтобы определить, как хорошо алгоритм оптимизации соответствует модели к данным.

rng('default') % For reproducibility
[Mdl,FitInfo] = fitckernel(X,Y)
Mdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: {'b'  'g'}
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1


  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'hinge'
                  Lambda: 0.0028
           BetaTolerance: 1.0000e-04
       GradientTolerance: 1.0000e-06
          ObjectiveValue: 0.2604
       GradientMagnitude: 0.0028
    RelativeChangeInBeta: 8.2512e-05
                 FitTime: 0.5085
                 History: []

Mdl является моделью ClassificationKernel. Чтобы осмотреть ошибку классификации в выборке, можно передать Mdl и данные тренировки или новые данные к функции loss. Или, можно передать Mdl и новые данные о предикторе к функции predict, чтобы предсказать метки класса для новых наблюдений. Можно также передать Mdl и данные тренировки к функции resume, чтобы продолжить обучение.

FitInfo является массивом структур, содержащим информацию об оптимизации. Используйте FitInfo, чтобы определить, являются ли измерения завершения оптимизации удовлетворительными.

Для лучшей точности можно увеличить максимальное число итераций оптимизации ('IterationLimit') и уменьшить значения допуска ('BetaTolerance' и 'GradientTolerance') при помощи аргументов пары "имя-значение". Выполнение так может улучшить меры как ObjectiveValue и RelativeChangeInBeta в FitInfo. Можно также оптимизировать параметры модели при помощи аргумента пары "имя-значение" 'OptimizeHyperparameters'.

Загрузите набор данных ionosphere. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, или плохой ('b') или хороший ('g').

load ionosphere

Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 20%-ю выборку затяжки для набора тестов.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Обучите бинарную модель классификации ядер, которая идентифицирует, плох ли радарный возврат ('b') или хорош ('g').

Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  1.000000e+00 |  0.000000e+00 |  2.811388e-01 |                |             0 |
|  LBFGS |      1 |            1 |  7.585395e-01 |  4.000000e+00 |  3.594306e-01 |   1.000000e+00 |          2048 |
|  LBFGS |      1 |            2 |  7.160994e-01 |  1.000000e+00 |  2.028470e-01 |   6.923988e-01 |          2048 |
|  LBFGS |      1 |            3 |  6.825272e-01 |  1.000000e+00 |  2.846975e-02 |   2.388909e-01 |          2048 |
|  LBFGS |      1 |            4 |  6.699435e-01 |  1.000000e+00 |  1.779359e-02 |   1.325304e-01 |          2048 |
|  LBFGS |      1 |            5 |  6.535619e-01 |  1.000000e+00 |  2.669039e-01 |   4.112952e-01 |          2048 |
|=================================================================================================================|

Mdl является моделью ClassificationKernel.

Предскажите метки набора тестов, создайте матрицу беспорядка для набора тестов и оцените ошибку классификации для набора тестов.

label = predict(Mdl,XTest);
ConfusionTest = confusionchart(YTest,label);

L = loss(Mdl,XTest,YTest)
L = 0.3594

Mdl неправильно классифицирует весь плохой радар, возвращается как хорошая прибыль.

Продолжите обучение при помощи resume. Эта функция продолжает обучение с теми же опциями, используемыми для учебного Mdl.

UpdatedMdl = resume(Mdl,XTrain,YTrain);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  6.535619e-01 |  0.000000e+00 |  2.669039e-01 |                |          2048 |
|  LBFGS |      1 |            1 |  6.132547e-01 |  1.000000e+00 |  6.355537e-03 |   1.522092e-01 |          2048 |
|  LBFGS |      1 |            2 |  5.938316e-01 |  4.000000e+00 |  3.202847e-02 |   1.498036e-01 |          2048 |
|  LBFGS |      1 |            3 |  4.169274e-01 |  1.000000e+00 |  1.530249e-01 |   7.234253e-01 |          2048 |
|  LBFGS |      1 |            4 |  3.679212e-01 |  5.000000e-01 |  2.740214e-01 |   2.495886e-01 |          2048 |
|  LBFGS |      1 |            5 |  3.332261e-01 |  1.000000e+00 |  1.423488e-02 |   9.558680e-02 |          2048 |
|  LBFGS |      1 |            6 |  3.235335e-01 |  1.000000e+00 |  7.117438e-03 |   7.137260e-02 |          2048 |
|  LBFGS |      1 |            7 |  3.112331e-01 |  1.000000e+00 |  6.049822e-02 |   1.252157e-01 |          2048 |
|  LBFGS |      1 |            8 |  2.972144e-01 |  1.000000e+00 |  7.117438e-03 |   5.796240e-02 |          2048 |
|  LBFGS |      1 |            9 |  2.837450e-01 |  1.000000e+00 |  8.185053e-02 |   1.484733e-01 |          2048 |
|  LBFGS |      1 |           10 |  2.797642e-01 |  1.000000e+00 |  3.558719e-02 |   5.856842e-02 |          2048 |
|  LBFGS |      1 |           11 |  2.771280e-01 |  1.000000e+00 |  2.846975e-02 |   2.349433e-02 |          2048 |
|  LBFGS |      1 |           12 |  2.741570e-01 |  1.000000e+00 |  3.914591e-02 |   3.113194e-02 |          2048 |
|  LBFGS |      1 |           13 |  2.725701e-01 |  5.000000e-01 |  1.067616e-01 |   8.729821e-02 |          2048 |
|  LBFGS |      1 |           14 |  2.667147e-01 |  1.000000e+00 |  3.914591e-02 |   3.491723e-02 |          2048 |
|  LBFGS |      1 |           15 |  2.621152e-01 |  1.000000e+00 |  7.117438e-03 |   5.104726e-02 |          2048 |
|  LBFGS |      1 |           16 |  2.601652e-01 |  1.000000e+00 |  3.558719e-02 |   3.764904e-02 |          2048 |
|  LBFGS |      1 |           17 |  2.589052e-01 |  1.000000e+00 |  3.202847e-02 |   3.655744e-02 |          2048 |
|  LBFGS |      1 |           18 |  2.583185e-01 |  1.000000e+00 |  7.117438e-03 |   6.490571e-02 |          2048 |
|  LBFGS |      1 |           19 |  2.556482e-01 |  1.000000e+00 |  9.252669e-02 |   4.601390e-02 |          2048 |
|  LBFGS |      1 |           20 |  2.542643e-01 |  1.000000e+00 |  7.117438e-02 |   4.141838e-02 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.532117e-01 |  1.000000e+00 |  1.067616e-02 |   1.661720e-02 |          2048 |
|  LBFGS |      1 |           22 |  2.529890e-01 |  1.000000e+00 |  2.135231e-02 |   1.231678e-02 |          2048 |
|  LBFGS |      1 |           23 |  2.523232e-01 |  1.000000e+00 |  3.202847e-02 |   1.958586e-02 |          2048 |
|  LBFGS |      1 |           24 |  2.506736e-01 |  1.000000e+00 |  1.779359e-02 |   2.474613e-02 |          2048 |
|  LBFGS |      1 |           25 |  2.501995e-01 |  1.000000e+00 |  1.779359e-02 |   2.514352e-02 |          2048 |
|  LBFGS |      1 |           26 |  2.488242e-01 |  1.000000e+00 |  3.558719e-03 |   1.531810e-02 |          2048 |
|  LBFGS |      1 |           27 |  2.485295e-01 |  5.000000e-01 |  3.202847e-02 |   1.229760e-02 |          2048 |
|  LBFGS |      1 |           28 |  2.482244e-01 |  1.000000e+00 |  4.270463e-02 |   8.970983e-03 |          2048 |
|  LBFGS |      1 |           29 |  2.479714e-01 |  1.000000e+00 |  3.558719e-03 |   7.393900e-03 |          2048 |
|  LBFGS |      1 |           30 |  2.477316e-01 |  1.000000e+00 |  3.202847e-02 |   3.268087e-03 |          2048 |
|  LBFGS |      1 |           31 |  2.476178e-01 |  2.500000e-01 |  3.202847e-02 |   5.445890e-03 |          2048 |
|  LBFGS |      1 |           32 |  2.474874e-01 |  1.000000e+00 |  1.779359e-02 |   3.535903e-03 |          2048 |
|  LBFGS |      1 |           33 |  2.473980e-01 |  1.000000e+00 |  7.117438e-03 |   2.821725e-03 |          2048 |
|  LBFGS |      1 |           34 |  2.472935e-01 |  1.000000e+00 |  3.558719e-03 |   2.699880e-03 |          2048 |
|  LBFGS |      1 |           35 |  2.471418e-01 |  1.000000e+00 |  3.558719e-03 |   1.242523e-02 |          2048 |
|  LBFGS |      1 |           36 |  2.469862e-01 |  1.000000e+00 |  2.846975e-02 |   7.895605e-03 |          2048 |
|  LBFGS |      1 |           37 |  2.469598e-01 |  1.000000e+00 |  2.135231e-02 |   6.657676e-03 |          2048 |
|  LBFGS |      1 |           38 |  2.466941e-01 |  1.000000e+00 |  3.558719e-02 |   4.654690e-03 |          2048 |
|  LBFGS |      1 |           39 |  2.466660e-01 |  5.000000e-01 |  1.423488e-02 |   2.885769e-03 |          2048 |
|  LBFGS |      1 |           40 |  2.465605e-01 |  1.000000e+00 |  3.558719e-03 |   4.562565e-03 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.465362e-01 |  1.000000e+00 |  1.423488e-02 |   5.652180e-03 |          2048 |
|  LBFGS |      1 |           42 |  2.463528e-01 |  1.000000e+00 |  3.558719e-03 |   2.389759e-03 |          2048 |
|  LBFGS |      1 |           43 |  2.463207e-01 |  1.000000e+00 |  1.511170e-03 |   3.738286e-03 |          2048 |
|  LBFGS |      1 |           44 |  2.462585e-01 |  5.000000e-01 |  7.117438e-02 |   2.321693e-03 |          2048 |
|  LBFGS |      1 |           45 |  2.461742e-01 |  1.000000e+00 |  7.117438e-03 |   2.599725e-03 |          2048 |
|  LBFGS |      1 |           46 |  2.461434e-01 |  1.000000e+00 |  3.202847e-02 |   3.186923e-03 |          2048 |
|  LBFGS |      1 |           47 |  2.461115e-01 |  1.000000e+00 |  7.117438e-03 |   1.530711e-03 |          2048 |
|  LBFGS |      1 |           48 |  2.460814e-01 |  1.000000e+00 |  1.067616e-02 |   1.811714e-03 |          2048 |
|  LBFGS |      1 |           49 |  2.460533e-01 |  5.000000e-01 |  1.423488e-02 |   1.012252e-03 |          2048 |
|  LBFGS |      1 |           50 |  2.460111e-01 |  1.000000e+00 |  1.423488e-02 |   4.166762e-03 |          2048 |
|  LBFGS |      1 |           51 |  2.459414e-01 |  1.000000e+00 |  1.067616e-02 |   3.271946e-03 |          2048 |
|  LBFGS |      1 |           52 |  2.458809e-01 |  1.000000e+00 |  1.423488e-02 |   1.846440e-03 |          2048 |
|  LBFGS |      1 |           53 |  2.458479e-01 |  1.000000e+00 |  1.067616e-02 |   1.180871e-03 |          2048 |
|  LBFGS |      1 |           54 |  2.458146e-01 |  1.000000e+00 |  1.455008e-03 |   1.422954e-03 |          2048 |
|  LBFGS |      1 |           55 |  2.457878e-01 |  1.000000e+00 |  7.117438e-03 |   1.880892e-03 |          2048 |
|  LBFGS |      1 |           56 |  2.457519e-01 |  1.000000e+00 |  2.491103e-02 |   1.074764e-03 |          2048 |
|  LBFGS |      1 |           57 |  2.457420e-01 |  1.000000e+00 |  7.473310e-02 |   9.511878e-04 |          2048 |
|  LBFGS |      1 |           58 |  2.457212e-01 |  1.000000e+00 |  3.558719e-03 |   3.718564e-04 |          2048 |
|  LBFGS |      1 |           59 |  2.457089e-01 |  1.000000e+00 |  4.270463e-02 |   6.237270e-04 |          2048 |
|  LBFGS |      1 |           60 |  2.457047e-01 |  5.000000e-01 |  1.423488e-02 |   3.647573e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           61 |  2.456991e-01 |  1.000000e+00 |  1.423488e-02 |   5.666884e-04 |          2048 |
|  LBFGS |      1 |           62 |  2.456898e-01 |  1.000000e+00 |  1.779359e-02 |   4.697056e-04 |          2048 |
|  LBFGS |      1 |           63 |  2.456792e-01 |  1.000000e+00 |  1.779359e-02 |   5.984927e-04 |          2048 |
|  LBFGS |      1 |           64 |  2.456603e-01 |  1.000000e+00 |  1.403782e-03 |   5.414985e-04 |          2048 |
|  LBFGS |      1 |           65 |  2.456482e-01 |  1.000000e+00 |  3.558719e-03 |   6.506293e-04 |          2048 |
|  LBFGS |      1 |           66 |  2.456358e-01 |  1.000000e+00 |  1.476262e-03 |   1.284139e-03 |          2048 |
|  LBFGS |      1 |           67 |  2.456124e-01 |  1.000000e+00 |  3.558719e-03 |   8.636596e-04 |          2048 |
|  LBFGS |      1 |           68 |  2.455980e-01 |  1.000000e+00 |  1.067616e-02 |   9.861527e-04 |          2048 |
|  LBFGS |      1 |           69 |  2.455780e-01 |  1.000000e+00 |  1.067616e-02 |   5.102487e-04 |          2048 |
|  LBFGS |      1 |           70 |  2.455633e-01 |  1.000000e+00 |  3.558719e-03 |   1.228077e-03 |          2048 |
|  LBFGS |      1 |           71 |  2.455449e-01 |  1.000000e+00 |  1.423488e-02 |   7.864590e-04 |          2048 |
|  LBFGS |      1 |           72 |  2.455261e-01 |  1.000000e+00 |  3.558719e-02 |   1.090815e-03 |          2048 |
|  LBFGS |      1 |           73 |  2.455142e-01 |  1.000000e+00 |  1.067616e-02 |   1.701506e-03 |          2048 |
|  LBFGS |      1 |           74 |  2.455075e-01 |  1.000000e+00 |  1.779359e-02 |   1.504577e-03 |          2048 |
|  LBFGS |      1 |           75 |  2.455008e-01 |  1.000000e+00 |  3.914591e-02 |   1.144021e-03 |          2048 |
|  LBFGS |      1 |           76 |  2.454943e-01 |  1.000000e+00 |  2.491103e-02 |   3.015254e-04 |          2048 |
|  LBFGS |      1 |           77 |  2.454918e-01 |  5.000000e-01 |  3.202847e-02 |   9.837523e-04 |          2048 |
|  LBFGS |      1 |           78 |  2.454870e-01 |  1.000000e+00 |  1.779359e-02 |   4.328953e-04 |          2048 |
|  LBFGS |      1 |           79 |  2.454865e-01 |  5.000000e-01 |  3.558719e-03 |   7.126815e-04 |          2048 |
|  LBFGS |      1 |           80 |  2.454775e-01 |  1.000000e+00 |  5.693950e-02 |   8.992562e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           81 |  2.454686e-01 |  1.000000e+00 |  1.183730e-03 |   1.590246e-04 |          2048 |
|  LBFGS |      1 |           82 |  2.454612e-01 |  1.000000e+00 |  2.135231e-02 |   1.389570e-04 |          2048 |
|  LBFGS |      1 |           83 |  2.454506e-01 |  1.000000e+00 |  3.558719e-03 |   6.162089e-04 |          2048 |
|  LBFGS |      1 |           84 |  2.454436e-01 |  1.000000e+00 |  1.423488e-02 |   1.877414e-03 |          2048 |
|  LBFGS |      1 |           85 |  2.454378e-01 |  1.000000e+00 |  1.423488e-02 |   3.370852e-04 |          2048 |
|  LBFGS |      1 |           86 |  2.454249e-01 |  1.000000e+00 |  1.423488e-02 |   8.133615e-04 |          2048 |
|  LBFGS |      1 |           87 |  2.454101e-01 |  1.000000e+00 |  1.067616e-02 |   3.872088e-04 |          2048 |
|  LBFGS |      1 |           88 |  2.453963e-01 |  1.000000e+00 |  1.779359e-02 |   5.670260e-04 |          2048 |
|  LBFGS |      1 |           89 |  2.453866e-01 |  1.000000e+00 |  1.067616e-02 |   1.444984e-03 |          2048 |
|  LBFGS |      1 |           90 |  2.453821e-01 |  1.000000e+00 |  7.117438e-03 |   2.457270e-03 |          2048 |
|  LBFGS |      1 |           91 |  2.453790e-01 |  5.000000e-01 |  6.761566e-02 |   8.228766e-04 |          2048 |
|  LBFGS |      1 |           92 |  2.453603e-01 |  1.000000e+00 |  2.135231e-02 |   1.084233e-03 |          2048 |
|  LBFGS |      1 |           93 |  2.453540e-01 |  1.000000e+00 |  2.135231e-02 |   2.060005e-04 |          2048 |
|  LBFGS |      1 |           94 |  2.453482e-01 |  1.000000e+00 |  1.779359e-02 |   1.560883e-04 |          2048 |
|  LBFGS |      1 |           95 |  2.453461e-01 |  1.000000e+00 |  1.779359e-02 |   1.614693e-03 |          2048 |
|  LBFGS |      1 |           96 |  2.453371e-01 |  1.000000e+00 |  3.558719e-02 |   2.145835e-04 |          2048 |
|  LBFGS |      1 |           97 |  2.453305e-01 |  1.000000e+00 |  4.270463e-02 |   7.602088e-04 |          2048 |
|  LBFGS |      1 |           98 |  2.453283e-01 |  2.500000e-01 |  2.135231e-02 |   3.422253e-04 |          2048 |
|  LBFGS |      1 |           99 |  2.453246e-01 |  1.000000e+00 |  3.558719e-03 |   3.872561e-04 |          2048 |
|  LBFGS |      1 |          100 |  2.453214e-01 |  1.000000e+00 |  3.202847e-02 |   1.732237e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |          101 |  2.453168e-01 |  1.000000e+00 |  1.067616e-02 |   3.065286e-04 |          2048 |
|  LBFGS |      1 |          102 |  2.453155e-01 |  5.000000e-01 |  4.626335e-02 |   3.402368e-04 |          2048 |
|  LBFGS |      1 |          103 |  2.453136e-01 |  1.000000e+00 |  1.779359e-02 |   2.215029e-04 |          2048 |
|  LBFGS |      1 |          104 |  2.453119e-01 |  1.000000e+00 |  3.202847e-02 |   4.142355e-04 |          2048 |
|  LBFGS |      1 |          105 |  2.453093e-01 |  1.000000e+00 |  1.423488e-02 |   2.186007e-04 |          2048 |
|  LBFGS |      1 |          106 |  2.453090e-01 |  1.000000e+00 |  2.846975e-02 |   1.338602e-03 |          2048 |
|  LBFGS |      1 |          107 |  2.453048e-01 |  1.000000e+00 |  1.423488e-02 |   3.208296e-04 |          2048 |
|  LBFGS |      1 |          108 |  2.453040e-01 |  1.000000e+00 |  3.558719e-02 |   1.294488e-03 |          2048 |
|  LBFGS |      1 |          109 |  2.452977e-01 |  1.000000e+00 |  1.423488e-02 |   8.328380e-04 |          2048 |
|  LBFGS |      1 |          110 |  2.452934e-01 |  1.000000e+00 |  2.135231e-02 |   5.149259e-04 |          2048 |
|  LBFGS |      1 |          111 |  2.452886e-01 |  1.000000e+00 |  1.779359e-02 |   3.650664e-04 |          2048 |
|  LBFGS |      1 |          112 |  2.452854e-01 |  1.000000e+00 |  1.067616e-02 |   2.633981e-04 |          2048 |
|  LBFGS |      1 |          113 |  2.452836e-01 |  1.000000e+00 |  1.067616e-02 |   1.804300e-04 |          2048 |
|  LBFGS |      1 |          114 |  2.452817e-01 |  1.000000e+00 |  7.117438e-03 |   4.251642e-04 |          2048 |
|  LBFGS |      1 |          115 |  2.452741e-01 |  1.000000e+00 |  1.779359e-02 |   9.018440e-04 |          2048 |
|  LBFGS |      1 |          116 |  2.452691e-01 |  1.000000e+00 |  2.135231e-02 |   9.941716e-05 |          2048 |
|=================================================================================================================|

Предскажите метки набора тестов, создайте матрицу беспорядка для набора тестов и оцените ошибку классификации для набора тестов.

UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);

UpdatedL = loss(UpdatedMdl,XTest,YTest)
UpdatedL = 0.1284

Ошибочные уменьшения классификации после resume обновляют модель классификации с большим количеством итераций.

Смотрите также

| |

Введенный в R2017b

Для просмотра документации необходимо авторизоваться на сайте