Ребро классификации для перекрестной подтвержденной модели классификации ядер
edge = kfoldEdge(CVMdl)edge = kfoldEdge(CVMdl,Name,Value) возвращает ребро классификации, полученное перекрестной подтвержденной, бинарной моделью ядра (edge = kfoldEdge(CVMdl)ClassificationPartitionedKernel) CVMdl. Для каждого сгиба kfoldEdge вычисляет ребро классификации для наблюдений сгиба валидации с помощью модели, обученной на наблюдениях учебного сгиба.
возвращает ребро классификации с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение". Например, задайте количество сгибов или уровня агрегации.edge = kfoldEdge(CVMdl,Name,Value)
Загрузите набор данных ionosphere. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, которые маркированы или плохи ('b') или хорошими ('g').
load ionosphereПерекрестный подтвердите бинарную модель классификации ядер использование данных.
CVMdl = fitckernel(X,Y,'Crossval','on')
CVMdl =
classreg.learning.partition.ClassificationPartitionedKernel
CrossValidatedModel: 'Kernel'
ResponseName: 'Y'
NumObservations: 351
KFold: 10
Partition: [1x1 cvpartition]
ClassNames: {'b' 'g'}
ScoreTransform: 'none'
Properties, Methods
CVMdl является моделью ClassificationPartitionedKernel. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Чтобы задать различное количество сгибов, используйте аргумент пары "имя-значение" 'KFold' вместо 'Crossval'.
Оцените перекрестное подтвержденное ребро классификации.
edge = kfoldEdge(CVMdl)
edge = 1.5585
Также можно получить ребра на сгиб путем определения пары "имя-значение" 'Mode','individual' в kfoldEdge.
Выполните выбор функции путем сравнения ребер k-сгиба от многоуровневых моделей. Базирующийся только на этом критерии, классификатор с самым большим ребром является лучшим классификатором.
Загрузите набор данных ionosphere. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, которые маркированы или плохи ('b') или хорошими ('g').
load ionosphereСлучайным образом выберите половину переменных прогноза.
rng(1); % For reproducibility p = size(X,2); % Number of predictors idxPart = randsample(p,ceil(0.5*p));
Перекрестный подтвердите две бинарных модели классификации ядер: тот, который использует все предикторы и тот, который использует половину предикторов.
CVMdl = fitckernel(X,Y,'CrossVal','on'); PCVMdl = fitckernel(X(:,idxPart),Y,'CrossVal','on');
CVMdl и PCVMdl являются моделями ClassificationPartitionedKernel. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Чтобы задать различное количество сгибов, используйте аргумент пары "имя-значение" 'KFold' вместо 'Crossval'.
Оцените ребро k-сгиба для каждого классификатора.
fullEdge = kfoldEdge(CVMdl)
fullEdge = 1.5142
partEdge = kfoldEdge(PCVMdl)
partEdge = 1.8910
На основе ребер k-сгиба классификатор, который использует половину предикторов, является лучшей моделью.
CVMdl — Перекрестная подтвержденная, бинарная модель классификации ядерClassificationPartitionedKernelПерекрестная подтвержденная, бинарная модель классификации ядер, заданная как объект модели ClassificationPartitionedKernel. Можно создать модель ClassificationPartitionedKernel при помощи fitckernel и задающий любой из аргументов пары "имя-значение" перекрестной проверки.
Чтобы получить оценки, kfoldEdge применяется, те же данные раньше перекрестный подтверждали модель классификации ядер (X и Y).
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
kfoldEdge(CVMdl,'Mode','individual') возвращает ребро классификации для каждого сгиба.'Folds' — Сверните индексы для прогноза1:CVMdl.KFold (значение по умолчанию) | числовой вектор положительных целых чиселСверните индексы для прогноза, заданного как пара, разделенная запятой, состоящая из 'Folds' и числовой вектор положительных целых чисел. Элементы Folds должны быть в диапазоне от 1 до CVMdl.KFold.
Программное обеспечение использует только сгибы, заданные в Folds для прогноза.
Пример: 'Folds',[1 4 10]
Типы данных: single | double
режим Уровень агрегации для вывода'average' (значение по умолчанию) | 'individual'Уровень агрегации для вывода, заданного как пара, разделенная запятой, состоящая из 'Mode' и 'average' или 'individual'.
Эта таблица описывает значения.
| Значение | Описание |
|---|---|
'average' | Вывод является скалярным средним значением по всем сгибам. |
'individual' | Вывод является вектором длины k, содержащий одно значение на сгиб, где k является количеством сгибов. |
Пример: 'Mode','individual'
edge — Ребро классификацииРебро классификации, возвращенное в виде числа или числового вектор-столбца.
Если Mode является 'average', то edge является средним ребром классификации по всем сгибам. В противном случае edge является k-by-1 числовой вектор-столбец, содержащий ребро классификации для каждого сгиба, где k является количеством сгибов.
classification edge является взвешенным средним classification margins.
Один способ выбрать среди нескольких классификаторов, например, выполнить выбор функции, состоит в том, чтобы выбрать классификатор, который приводит к самому большому ребру.
classification margin для бинарной классификации, для каждого наблюдения, различия между счетом классификации к истинному классу и счетом классификации к ложному классу.
Программное обеспечение задает поле классификации для бинарной классификации как
x является наблюдением. Если истинная метка x является положительным классом, то y равняется 1, и –1 в противном случае. f (x) является счетом классификации положительных классов к наблюдению x. Поле классификации обычно задается как m = y f (x).
Если поля находятся в той же шкале, то они служат мерой по уверенности классификации. Среди нескольких классификаторов те, которые приводят к большим полям, лучше.
Для моделей классификации ядер, необработанного classification score для классификации наблюдения x, вектор - строка, в положительный класс задан
преобразование наблюдения для расширения функции.
β является предполагаемым вектор-столбцом коэффициентов.
b является предполагаемым скалярным смещением.
Необработанный счет классификации к классификации x в отрицательный класс является −f (x). Программное обеспечение классифицирует наблюдения в класс, который приводит к положительному счету.
Если модель классификации ядер состоит из учеников логистической регрессии, то программное обеспечение применяет преобразование счета 'logit' к необработанным очкам классификации (см. ScoreTransform).
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.