Ошибка классификации для наивного классификатора Байеса
L = loss(Mdl,tbl,ResponseVarName)
L = loss(Mdl,tbl,Y)
L = loss(Mdl,X,Y)
L = loss(___,Name,Value)
возвращает минимальную потерю классификации (см. Потерю Классификации), скалярное представление, как хорошо обученный наивный классификатор Байеса L
= loss(Mdl
,tbl
,ResponseVarName
)Mdl
классифицирует данные о предикторе на таблицу tbl
) по сравнению с истинными метками класса в tbl.ResponseVarName
.
loss
нормирует вероятности класса в tbl.ResponseVarName
к предшествующим вероятностям класса fitcnb
, используемый для обучения, сохраненного в свойстве Prior
Mdl
.
возвращает минимальную потерю классификации (L
= loss(Mdl
,tbl
,Y
)L
), скалярное представление, как хорошо обученный наивный классификатор Байеса Mdl
классифицирует данные о предикторе на таблицу tbl
) по сравнению с истинными метками класса в Y
.
loss
нормирует вероятности класса в Y
к предшествующим вероятностям класса fitcnb
, используемый для обучения, сохраненного в свойстве Prior
Mdl
.
возвращает минимальную потерю классификации (L
= loss(Mdl
,X
,Y
)L
), скалярное представление, как хорошо обученный наивный классификатор Байеса Mdl
классифицирует данные о предикторе (X
) по сравнению с истинным классом, маркирует (Y
).
loss
нормирует вероятности класса в Y
к предшествующим вероятностям класса fitcnb
, используемый для обучения, сохраненного в свойстве Prior
Mdl
.
возвращает потерю классификации с дополнительными опциями, заданными одним или несколькими аргументами пары L
= loss(___,Name,Value
)Name,Value
, с помощью любого из предыдущих синтаксисов.
Mdl
— Наивный классификатор БайесаClassificationNaiveBayes
| модель CompactClassificationNaiveBayes
Наивный классификатор Байеса, заданный как модель ClassificationNaiveBayes
или модель CompactClassificationNaiveBayes
, возвращенная fitcnb
или compact
, соответственно.
tbl
Выборочные данныеВыборочные данные, заданные как таблица. Каждая строка tbl
соответствует одному наблюдению, и каждый столбец соответствует одной переменной прогноза. Опционально, tbl
может содержать дополнительные столбцы для весов наблюдения и переменной отклика. tbl
должен содержать все предикторы, используемые, чтобы обучить Mdl
. Многостолбцовые переменные и массивы ячеек кроме массивов ячеек из символьных векторов не позволены.
Если бы вы обучили Mdl
с помощью выборочных данных, содержавшихся в table
, то входные данные для этого метода должны также быть в таблице.
Типы данных: table
ResponseVarName
— Имя переменной откликаtbl
Имя переменной отклика, заданное как имя переменной в tbl
.
Необходимо задать ResponseVarName
как вектор символов или представить скаляр в виде строки. Например, если переменная отклика, y
хранится как tbl.y
, то задают его как 'y'
. В противном случае программное обеспечение обрабатывает все столбцы tbl
, включая y
, как предикторы когда обучение модель.
Переменная отклика должна быть категориальным, символом, или массивом строк, логическим или числовым вектором или массивом ячеек из символьных векторов. Если переменная отклика является символьным массивом, то каждый элемент должен соответствовать одной строке массива.
Типы данных: char | string
X
Данные о предиктореДанные о предикторе, заданные как числовая матрица.
Каждая строка X
соответствует одному наблюдению (также известный как экземпляр или пример), и каждый столбец соответствует одной переменной (также известный как функцию). Переменные, составляющие столбцы X
, должны совпасть с переменными, которые обучили Mdl
.
Длина Y
и количество строк X
должны быть равными.
Типы данных: double | single
Y
Метки классаМетки класса, заданные как категориальное, символ, или массив строк, логический или числовой вектор или массив ячеек из символьных векторов. Y
должен совпасть с типом данных Mdl.ClassNames
. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.)
Длина Y
и количество строк tbl
или X
должны быть равными.
Типы данных: categorical
| char
| string
| logical
| single
| double
| cell
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'LossFun'
— Функция потерь'classiferror'
(значение по умолчанию) | 'binodeviance'
| 'exponential'
| 'hinge'
| 'logit'
| 'mincost'
| 'quadratic'
| указатель на функциюФункция потерь, заданная как пара, разделенная запятой, состоящая из 'LossFun'
и встроенного имени функции потерь или указателя на функцию.
В следующей таблице перечислены доступные функции потерь. Задайте тот с помощью его соответствующего вектора символов или представьте скаляр в виде строки.
Значение | Описание |
---|---|
'binodeviance' | Биномиальное отклонение |
'classiferror' | Ошибка классификации |
'exponential' | Экспоненциал |
'hinge' | Стержень |
'logit' | Логистический |
'mincost' | Минимальный ожидал стоимость misclassification (для очков классификации, которые являются апостериорными вероятностями), |
'quadratic' | Квадратичный |
'mincost'
подходит для очков классификации, которые являются апостериорными вероятностями. Наивные модели Bayes возвращают апостериорные вероятности как очки классификации по умолчанию (см. predict
).
Задайте свою собственную функцию с помощью обозначения указателя на функцию.
Предположим, что n
является количеством наблюдений в X
и K
быть количеством отличных классов (numel(Mdl.ClassNames)
, Mdl
является входной моделью). Ваша функция должна иметь эту подпись
lossvalue = lossfun
(C,S,W,Cost)
Выходным аргументом lossvalue
является скаляр.
Вы выбираете имя функции (lossfun
).
C
является n
-by-K
логическая матрица со строками, указывающими, которые классифицируют соответствующее наблюдение, принадлежит. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames
.
Создайте C
установкой C(p,q) = 1
, если наблюдение p
находится в классе q
для каждой строки. Установите все другие элементы строки p
к 0
.
S
является n
-by-K
числовая матрица очков классификации. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames
. S
является матрицей очков классификации, подобных выводу predict
.
W
является n
-by-1 числовой вектор весов наблюдения. Если вы передаете W
, программное обеспечение нормирует их, чтобы суммировать к 1
.
Cost
является K-by-K
числовая матрица затрат misclassification. Например, Cost = ones(K) - eye(K)
задает стоимость 0
для правильной классификации и 1
для misclassification.
Задайте свою функцию с помощью
.'LossFun',@lossfun
Для получения дополнительной информации на функциях потерь, смотрите Потерю Классификации.
Типы данных: char
| string
| function_handle
'Weights'
— Веса наблюденияones(size(X,1),1)
(значение по умолчанию) | числовой вектор | имя переменной в tbl
Веса наблюдения, заданные как пара, разделенная запятой, состоящая из 'Weights'
и числового вектора или имени переменной в tbl
. Программное обеспечение взвешивает наблюдения в каждой строке X
или tbl
с соответствующим весом в Weights
.
Если вы задаете Weights
как вектор, то размер Weights
должен быть равен количеству строк X
или tbl
.
Если вы задаете Weights
как имя переменной в tbl
, необходимо сделать так как вектор символов или представить скаляр в виде строки. Например, если веса хранятся как tbl.w
, то задают Weights
как 'w'
. В противном случае программное обеспечение обрабатывает все столбцы tbl
, включая tbl.w
, как предикторы.
Если вы не задаете свою собственную функцию потерь, то программное обеспечение нормирует Weights
, чтобы составить в целом 1
.
Типы данных: double
| char
| string
L
Потеря классификацииПотеря классификации, возвращенная как скаляр. L
является обобщением или качественной мерой по перезамене. Его интерпретация зависит от функции потерь и схемы взвешивания, но в целом лучшие классификаторы приводят к меньшим значениям потерь.
Загрузите ирисовый набор данных Фишера.
load fisheriris X = meas; % Predictors Y = species; % Response rng(1); % For reproducibility
Обучите наивный классификатор Байеса. Задайте 15%-ю выборку затяжки для тестирования. Это - хорошая практика, чтобы задать порядок класса. Примите, что каждый предиктор условно нормально распределен, учитывая свою метку.
CVMdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'},... 'Holdout',0.15); CMdl = CVMdl.Trained{1}; % Extract the trained, compact classifier testInds = test(CVMdl.Partition); % Extract the test indices XTest = X(testInds,:); YTest = Y(testInds);
CVMdl
является классификатором ClassificationPartitionedModel
. Это содержит свойство Trained
, которое является массивом ячеек 1 на 1, содержащим классификатор CompactClassificationNaiveBayes
, что программное обеспечение обучило использование набора обучающих данных.
Определите, как хорошо алгоритм делает вывод путем оценки тестовой выборки минимальная потеря стоимости.
L = loss(CMdl,XTest,YTest)
L = 0.0476
Тестовая выборка средняя стоимость классификации является приблизительно 0,05.
Вы можете улучшить ошибку классификации путем определения лучших дистрибутивов предиктора, когда вы обучаете классификатор.
Загрузите ирисовый набор данных Фишера.
load fisheriris X = meas; % Predictors Y = species; % Response rng(1); % For reproducibility
Обучите наивный классификатор Байеса. Задайте 15%-ю выборку затяжки для тестирования. Это - хорошая практика, чтобы задать порядок класса. Примите, что каждый предиктор условно нормально распределен, учитывая свою метку.
CVMdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'},... 'Holdout',0.15); CMdl = CVMdl.Trained{1}; % Extract the trained, compact classifier testInds = test(CVMdl.Partition); % Extract the test indices XTest = X(testInds,:); YTest = Y(testInds);
CVMdl
является классификатором ClassificationPartitionedModel
. Это содержит свойство Trained
, которое является массивом ячеек 1 на 1, содержащим классификатор CompactClassificationNaiveBayes
, что программное обеспечение обучило использование набора обучающих данных.
Определите, как хорошо алгоритм делает вывод путем оценки тестовой ошибки классификации выборок.
L = loss(CMdl,XTest,YTest,'LossFun','classiferror')
L = 0.0476
Классификатор неправильно классифицировал приблизительно 5% тестовых демонстрационных наблюдений.
Функции Classification loss измеряют прогнозирующую погрешность моделей классификации. Когда вы сравниваете тот же тип потери среди многих моделей, более низкая потеря указывает на лучшую прогнозирующую модель.
Рассмотрите следующий сценарий.
L является средневзвешенной потерей классификации.
n является объемом выборки.
Для бинарной классификации:
yj является наблюдаемой меткой класса. Программные коды это как –1 или 1, указывая на отрицательный или положительный класс, соответственно.
f (Xj) является необработанным счетом классификации к наблюдению (строка) j данных о предикторе X.
mj = yj f (Xj) является счетом классификации к классификации наблюдения j в класс, соответствующий yj. Положительные значения mj указывают на правильную классификацию и не способствуют очень средней потере. Отрицательные величины mj указывают на неправильную классификацию и значительно способствуют средней потере.
Для алгоритмов, которые поддерживают классификацию мультиклассов (то есть, K ≥ 3):
yj* является вектором K – 1 нуль, с 1 в положении, соответствующем истинному, наблюдаемому классу yj. Например, если истинный класс второго наблюдения является третьим классом и K = 4, то y *2 = [0 0 1 0] ′. Порядок классов соответствует порядку в свойстве ClassNames
входной модели.
f (Xj) является длиной вектор K музыки класса к наблюдению j данных о предикторе X. Порядок очков соответствует порядку классов в свойстве ClassNames
входной модели.
mj = yj* ′ f (Xj). Поэтому mj является скалярным счетом классификации, который модель предсказывает для истинного, наблюдаемого класса.
Весом для наблюдения j является wj. Программное обеспечение нормирует веса наблюдения так, чтобы они суммировали к соответствующей предшествующей вероятности класса. Программное обеспечение также нормирует априорные вероятности, таким образом, они суммируют к 1. Поэтому
Учитывая этот сценарий, следующая таблица описывает поддерживаемые функции потерь, которые можно задать при помощи аргумента пары "имя-значение" 'LossFun'
.
Функция потерь | Значение LossFun | Уравнение |
---|---|---|
Биномиальное отклонение | 'binodeviance' | |
Экспоненциальная потеря | 'exponential' | |
Ошибка классификации | 'classiferror' | Это - взвешенная часть неправильно классифицированных наблюдений где метка класса, соответствующая классу с максимальной апостериорной вероятностью. I {x} является функцией индикатора. |
Потеря стержня | 'hinge' | |
Потеря логита | 'logit' | |
Минимальная стоимость | 'mincost' | Минимальная стоимость. Программное обеспечение вычисляет взвешенную минимальную стоимость с помощью этой процедуры для наблюдений j = 1..., n.
Взвешенная, средняя, минимальная потеря стоимости |
Квадратичная потеря | 'quadratic' |
Эта фигура сравнивает функции потерь (кроме 'mincost'
) для одного наблюдения по m. Некоторые функции нормированы, чтобы пройти [0,1].
misclassification cost является относительной серьезностью классификатора, маркирующего наблюдение в неправильный класс.
Существует два типа затрат misclassification: верный и ожидаемый. Позвольте K быть количеством классов.
True misclassification cost — K-by-K матрица, где элемент (i, j) указывает на misclassification стоимость предсказания наблюдения в класс j, если его истинным классом является i. Программное обеспечение хранит стоимость misclassification в свойстве Mdl.Cost
, и используемый в вычислениях. По умолчанию, Mdl.Cost(i,j)
= 1, если i
≠ j
и Mdl.Cost(i,j)
= 0, если i
= j
. Другими словами, стоимостью является 0
для правильной классификации и 1
для любой неправильной классификации.
Expected misclassification cost — K - размерный вектор, где элемент k является взвешенным средним misclassification стоимость классификации наблюдения в класс k, взвешенный апостериорными вероятностями класса. Другими словами,
программное обеспечение классифицирует наблюдения к классу, соответствующему с самой низкой ожидаемой стоимостью misclassification.
posterior probability является вероятностью, что наблюдение принадлежит конкретного класса, учитывая данные.
Для наивного Бейеса апостериорная вероятность, что классификацией является k для данного наблюдения (x 1..., xP)
где:
условная объединенная плотность предикторов, учитывая, они находятся в классе k. Mdl.DistributionNames
хранит имена распределения предикторов.
π (Y = k) является распределением априорной вероятности класса. Mdl.Prior
хранит предшествующее распределение.
объединенная плотность предикторов. Классы дискретны, таким образом,
prior probability класса является относительной частотой, которой верят, с которой наблюдения от того класса происходят в генеральной совокупности.
[1] Hastie, T., Р. Тибширэни и Дж. Фридман. Элементы Статистического Изучения, второго выпуска. Спрингер, Нью-Йорк, 2008.
Эта функция полностью поддерживает "высокие" массивы. Для получения дополнительной информации смотрите Длинные массивы (MATLAB).
ClassificationNaiveBayes
| CompactClassificationNaiveBayes
| fitcnb
| predict
| resubLoss
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.