Дробные планы факторного эксперимента

Введение в дробные планы факторного эксперимента

Двухуровневые проекты достаточны для оценки многих производственных процессов. Факторные уровни ±1 могут указать на категориальные факторы, нормировал факторные экстремальные значения, или просто и “вниз” от текущих факторных настроек. Изменения процесса оценки экспериментаторов интересуются, в основном, факторными направлениями тот вывод к усовершенствованию процесса.

Для экспериментов со многими факторами двухуровневые полные планы факторного эксперимента могут привести к большим объемам данных. Например, двухуровневый полный план факторного эксперимента с 10 факторами требует 210 = 1 024 выполнения. Часто, однако, отдельные факторы или их взаимодействия не имеют никаких различимых эффектов на ответ. Это особенно верно для взаимодействий высшего порядка. В результате хорошо разработанный эксперимент может использовать меньше выполнений для оценки параметров модели.

Дробные планы факторного эксперимента используют часть выполнений, требуемых полными планами факторного эксперимента. Подмножество экспериментальных обработок выбрано на основе оценки (или предположение), которых факторы и взаимодействия имеют старшие значащие эффекты. Если этот выбор сделан, экспериментальный план должен разделить эти эффекты. В частности, значительными эффектами не должен быть confounded, то есть, измерение, не нужно зависеть от измерения другого.

Plackett-бирманские проекты

Plackett-Burman designs используется, когда только основные эффекты рассматриваются значительными. Двухуровневые Plackett-бирманские проекты требуют многих экспериментальных выполнений, которые являются кратными 4, а не степень 2. Функция MATLAB® hadamard генерирует эти проекты:

dPB = hadamard(8)
dPB =
     1    1    1    1    1    1    1    1
     1   -1    1   -1    1   -1    1   -1
     1    1   -1   -1    1    1   -1   -1
     1   -1   -1    1    1   -1   -1    1
     1    1    1    1   -1   -1   -1   -1
     1   -1    1   -1   -1    1   -1    1
     1    1   -1   -1   -1   -1    1    1
     1   -1   -1    1   -1    1    1   -1

Бинарные факторные уровни обозначаются ±1. Проект является для восьми выполнений (строки dPB) управлением семью двухуровневыми факторами (последние семь столбцов dPB). Количество выполнений является частью 8/27 = 0.0625 из выполнений, требуемых полным планом факторного эксперимента. Экономика достигается за счет соединения основных эффектов с любыми двухсторонними взаимодействиями.

Общие дробные проекты

За счет большего дробного проекта можно задать, какие взаимодействия вы хотите считать значительным. Проект resolution, R - тот, в котором никакой n - факторное взаимодействие соединено с любым другим эффектом, содержащим меньше, чем R – факторы n. Таким образом проект разрешения III не соединяет основные эффекты друг с другом, но может соединить их с двухсторонними взаимодействиями (как в Plackett-бирманских Проектах), в то время как проект IV разрешения не соединяет или основные эффекты или двухсторонние взаимодействия, но может соединить двухсторонние взаимодействия друг с другом.

Задайте общие дробные планы факторного эксперимента с помощью полного плана факторного эксперимента для выбранного подмножества basic factors и generators для остающихся факторов. Генераторы являются продуктами основных факторов, давая уровни для остающихся факторов. Используйте функцию Statistics and Machine Learning Toolbox™ fracfact, чтобы сгенерировать эти проекты:

dfF = fracfact('a b c d bcd acd')
dfF =
    -1    -1    -1    -1    -1    -1
    -1    -1    -1     1     1     1
    -1    -1     1    -1     1     1
    -1    -1     1     1    -1    -1
    -1     1    -1    -1     1    -1
    -1     1    -1     1    -1     1
    -1     1     1    -1    -1     1
    -1     1     1     1     1    -1
     1    -1    -1    -1    -1     1
     1    -1    -1     1     1    -1
     1    -1     1    -1     1    -1
     1    -1     1     1    -1     1
     1     1    -1    -1     1     1
     1     1    -1     1    -1    -1
     1     1     1    -1    -1    -1
     1     1     1     1     1     1

Это - проект с шестью факторами, в котором четыре двухуровневых основных фактора (a, b, c и d в первых четырех столбцах dfF) измеряются в каждой комбинации уровней, в то время как два остающихся фактора (в последних трех столбцах dfF) измеряются только на уровнях, заданных генераторами bcd и acd, соответственно. Уровни в сгенерированных столбцах являются продуктами соответствующих уровней в столбцах, которые составляют генератор.

Проблема создания дробного плана факторного эксперимента состоит в том, чтобы выбрать основные факторы и генераторы так, чтобы проект достиг заданного разрешения в конкретном количестве выполнений. Используйте функцию Statistics and Machine Learning Toolbox fracfactgen, чтобы найти соответствующие генераторы:

generators = fracfactgen('a b c d e f',4,4)
generators = 
    'a'
    'b'
    'c'
    'd'
    'bcd'
    'acd'
Это генераторы для проекта с шестью факторами с факторами a через f, с помощью 24 = 16 выполнений, чтобы достигнуть IV разрешения. Функция fracfactgen использует эффективный алгоритм поиска, чтобы найти генераторы, которые удовлетворяют требования.

Дополнительный вывод от fracfact отображает confounding pattern проекта:

[dfF,confounding] = fracfact(generators);
confounding
confounding = 
    'Term'     'Generator'    'Confounding'  
    'X1'       'a'            'X1'           
    'X2'       'b'            'X2'           
    'X3'       'c'            'X3'           
    'X4'       'd'            'X4'           
    'X5'       'bcd'          'X5'           
    'X6'       'acd'          'X6'           
    'X1*X2'    'ab'           'X1*X2 + X5*X6'
    'X1*X3'    'ac'           'X1*X3 + X4*X6'
    'X1*X4'    'ad'           'X1*X4 + X3*X6'
    'X1*X5'    'abcd'         'X1*X5 + X2*X6'
    'X1*X6'    'cd'           'X1*X6 + X2*X5 + X3*X4'
    'X2*X3'    'bc'           'X2*X3 + X4*X5'
    'X2*X4'    'bd'           'X2*X4 + X3*X5'
    'X2*X5'    'cd'           'X1*X6 + X2*X5 + X3*X4'
    'X2*X6'    'abcd'         'X1*X5 + X2*X6'
    'X3*X4'    'cd'           'X1*X6 + X2*X5 + X3*X4'
    'X3*X5'    'bd'           'X2*X4 + X3*X5'
    'X3*X6'    'ad'           'X1*X4 + X3*X6'
    'X4*X5'    'bc'           'X2*X3 + X4*X5'
    'X4*X6'    'ac'           'X1*X3 + X4*X6'
    'X5*X6'    'ab'           'X1*X2 + X5*X6'

Шаблон соединения показывает, что основные эффекты эффективно разделяются проектом, но двухсторонние взаимодействия соединены с различными другими двухсторонними взаимодействиями.