Эйлер

Числа Эйлера и полиномы

Синтаксис

euler(n)
euler(n,x)

Описание

пример

euler(n) возвращает n th Число Эйлера.

пример

euler(n,x) возвращает n th Эйлеров полином.

Примеры

Числа Эйлера с четными и нечетными индексами

Числа Эйлера с даже индексами чередуют знаки. Любым Числом Эйлера с нечетным индексом является 0.

Вычислите даже индексированные Числа Эйлера с индексами от 0 до 10:

euler(0:2:10)
ans =
           1          -1           5         -61...
        1385      -50521

Вычислите нечетно индексированные Числа Эйлера с индексами от 1 до 11:

euler(1:2:11)
ans =
     0     0     0     0     0     0

Эйлеровы полиномы

Для Эйлеровых полиномов используйте euler с двумя входными параметрами.

Вычислите первые, вторые, и третьи Эйлеровы полиномы в переменных x, y и z, соответственно:

syms x y z
euler(1, x)
euler(2, y)
euler(3, z)
ans =
x - 1/2
 
ans =
y^2 - y
 
ans =
z^3 - (3*z^2)/2 + 1/4

Если второй аргумент является номером, euler оценивает полином в том номере. Здесь, результатом является число с плавающей запятой, потому что входные параметры не являются символьными числами:

euler(2, 1/3)
ans =
   -0.2222

Чтобы получить точный символьный результат, преобразуйте по крайней мере один номер в символьный объект:

euler(2, sym(1/3))
ans =
-2/9

Постройте эйлеровы полиномы

Постройте первые шесть Эйлеровых полиномов.

syms x
fplot(euler(0:5, x), [-1 2])
title('Euler Polynomials')
grid on

Обработайте выражения, содержащие эйлеровы полиномы

Много функций, таких как diff и expand, могут обработать выражения, содержащие euler.

Найдите первые и вторые производные Эйлерового полинома:

syms n x
diff(euler(n,x^2), x)
ans =
2*n*x*euler(n - 1, x^2)
diff(euler(n,x^2), x, x)
ans =
2*n*euler(n - 1, x^2) + 4*n*x^2*euler(n - 2, x^2)*(n - 1)

Расширьте эти выражения, содержащие Эйлеровы полиномы:

expand(euler(n, 2 - x))
ans =
2*(1 - x)^n - (-1)^n*euler(n, x)
expand(euler(n, 2*x))
ans =
(2*2^n*bernoulli(n + 1, x + 1/2))/(n + 1) -...
(2*2^n*bernoulli(n + 1, x))/(n + 1)

Входные параметры

свернуть все

Индекс Числа Эйлера или полинома, заданного как неотрицательное целое число, символьное неотрицательное целое число, переменная, выражение, функция, вектор или матрица. Если n является вектором или матрицей, euler возвращает Числа Эйлера или полиномы для каждого элемента n. Если один входной параметр является скаляром, и другой является вектором или матрицей, euler(n,x) расширяет скаляр в вектор или матрицу, одного размера в качестве другого аргумента со всеми элементами, равными тому скаляру.

Полиномиальная переменная, заданная как символьная переменная, выражение, функция, вектор или матрица. Если x является вектором или матрицей, euler возвращает Числа Эйлера или полиномы для каждого элемента x. Когда вы используете функцию euler, чтобы найти Эйлеровы полиномы, по крайней мере один аргумент должен быть скаляром, или оба аргумента должны быть векторами или матрицами, одного размера. Если один входной параметр является скаляром, и другой является вектором или матрицей, euler(n,x) расширяет скаляр в вектор или матрицу, одного размера в качестве другого аргумента со всеми элементами, равными тому скаляру.

Больше о

свернуть все

Эйлеровы полиномы

Эйлеровы полиномы заданы можно следующим образом:

2extet+1=n=0Эйлер(n,x)tnn!

Числа Эйлера

Числа Эйлера заданы с точки зрения Эйлеровых полиномов можно следующим образом:

Эйлер(n)=2nЭйлер(n,12)

Советы

  • Для другого значения номера Эйлера, e = 2,71828 …, exp(1) вызова, чтобы возвратить представление с двойной точностью. Для точного представления номера Эйлера e вызовите exp(sym(1)).

  • Для постоянного Эйлера-Машерони смотрите eulergamma.

Смотрите также

|

Введенный в R2014a