Определите количество гена и профилей выражения расшифровки стенограммы
генерирует оценки распространенности для выборок в cxbFile
= cuffquant(transcriptsAnnot
,alignmentFiles
)alignmentFiles
использование ссылочного файла аннотации transcriptsAnnot
[1]. Можно использовать сгенерированную распространенность CXB-формата (*.CXB), как введено для cuffdiff
выполнять нисходящий дифференциальный анализ выражения.
cuffquant
требует Пакета Поддержки Запонок для Bioinformatics Toolbox™. Если пакет поддержки не установлен, то функция обеспечивает ссылку на загрузку.
cuffquant
поддерживается на Mac и платформах UNIX® только.
дополнительные опции использования заданы cxbFile
= cuffquant(transcriptsAnnot
,alignmentFiles
,opt
)opt
.
дополнительные опции использования заданы одним или несколькими аргументами пары "имя-значение". Например, cxbFile
= cuffquant(transcriptsAnnot
,alignmentFiles
,Name,Value
)cuffquant('gyrAB.gtf',["Myco_1_1.sam", "Myco_2_1.sam"],'NumThreads',5)
задает, чтобы использовать пять параллельных потоков.
Создайте CufflinksOptions
объект задать опции запонок, такие как количество параллельных потоков и выходной директории, чтобы сохранить результаты.
cflOpt = CufflinksOptions;
cflOpt.NumThreads = 8;
cflOpt.OutputDirectory = "./cufflinksOut";
Файлы SAM предусмотрели этот пример, содержат выровненные чтения для Микоплазмы pneumoniae от двух выборок с три, реплицирует каждого. Чтения симулированы 100bp-чтения для двух генов (gyrA
и gyrB
) расположенный друг рядом с другом на геноме. Все чтения сортируются по ссылочному положению, как требуется по cufflinks
.
sams = ["Myco_1_1.sam","Myco_1_2.sam","Myco_1_3.sam",... "Myco_2_1.sam", "Myco_2_2.sam", "Myco_2_3.sam"];
Соберите транскриптом от выровненных чтений.
[gtfs,isofpkm,genes,skipped] = cufflinks(sams,cflOpt);
gtfs
список файлов GTF, которые содержат собранные изоформы.
Сравните собранные изоформы с помощью cuffcompare
.
stats = cuffcompare(gtfs);
Объедините собранные расшифровки стенограммы с помощью cuffmerge
.
mergedGTF = cuffmerge(gtfs,'OutputDirectory','./cuffMergeOutput');
mergedGTF
отчеты только одна расшифровка стенограммы. Это вызвано тем, что два гена интереса расположены друг рядом с другом и cuffmerge
не может отличить два отличных гена. Вести cuffmerge
, используйте ссылочный GTF (gyrAB.gtf
) содержа информацию об этих двух генах. Если файл не расположен в той же директории, что вы запускаете cuffmerge
от, необходимо также задать путь к файлу.
gyrAB = which('gyrAB.gtf'); mergedGTF2 = cuffmerge(gtfs,'OutputDirectory','./cuffMergeOutput2',... 'ReferenceGTF',gyrAB);
Вычислите распространенности (уровни экспрессии) от выровненных чтений для каждой выборки.
abundances1 = cuffquant(mergedGTF2,["Myco_1_1.sam","Myco_1_2.sam","Myco_1_3.sam"],... 'OutputDirectory','./cuffquantOutput1'); abundances2 = cuffquant(mergedGTF2,["Myco_2_1.sam", "Myco_2_2.sam", "Myco_2_3.sam"],... 'OutputDirectory','./cuffquantOutput2');
Оцените значение изменений в выражении для генов и расшифровок стенограммы между условиями путем выполнения тестирования дифференциала с помощью cuffdiff
. cuffdiff
функция действует на двух отличных шагах: функция сначала оценивает распространенности от выровненных чтений, и затем выполняет статистический анализ. В некоторых случаях (например, распределяя вычисляющий загрузку через несколько рабочих), выполнение двух шагов отдельно желательно. После выполнения первого шага с cuffquant
, можно затем использовать бинарный выходной файл CXB в качестве входа к cuffdiff
выполнять статистический анализ. Поскольку cuffdiff
возвращает несколько файлов, укажите, что выходная директория рекомендуется.
isoformDiff = cuffdiff(mergedGTF2,[abundances1,abundances2],... 'OutputDirectory','./cuffdiffOutput');
Отобразите таблицу, содержащую дифференциальные результаты испытаний выражения для этих двух генов gyrB
и gyrA
.
readtable(isoformDiff,'FileType','text')
ans = 2×14 table test_id gene_id gene locus sample_1 sample_2 status value_1 value_2 log2_fold_change_ test_stat p_value q_value significant ________________ _____________ ______ _______________________ ________ ________ ______ __________ __________ _________________ _________ _______ _______ ___________ 'TCONS_00000001' 'XLOC_000001' 'gyrB' 'NC_000912.1:2868-7340' 'q1' 'q2' 'OK' 1.0913e+05 4.2228e+05 1.9522 7.8886 5e-05 5e-05 'yes' 'TCONS_00000002' 'XLOC_000001' 'gyrA' 'NC_000912.1:2868-7340' 'q1' 'q2' 'OK' 3.5158e+05 1.1546e+05 -1.6064 -7.3811 5e-05 5e-05 'yes'
Можно использовать cuffnorm
сгенерировать нормированные таблицы выражения для последующих анализов. cuffnorm
результаты полезны, когда у вас есть много выборок, и вы хотите кластеризировать их или уровни экспрессии графика для генов, которые важны в вашем исследовании. Обратите внимание на то, что вы не можете выполнить дифференциальный анализ выражения с помощью cuffnorm
.
Задайте массив ячеек, где каждый элемент является вектором строки, содержащим имена файлов для одной выборки с, реплицирует.
alignmentFiles = {["Myco_1_1.sam","Myco_1_2.sam","Myco_1_3.sam"],... ["Myco_2_1.sam", "Myco_2_2.sam", "Myco_2_3.sam"]} isoformNorm = cuffnorm(mergedGTF2, alignmentFiles,... 'OutputDirectory', './cuffnormOutput');
Отобразите таблицу, содержащую нормированные уровни экспрессии для каждой расшифровки стенограммы.
readtable(isoformNorm,'FileType','text')
ans = 2×7 table tracking_id q1_0 q1_2 q1_1 q2_1 q2_0 q2_2 ________________ __________ __________ __________ __________ __________ __________ 'TCONS_00000001' 1.0913e+05 78628 1.2132e+05 4.3639e+05 4.2228e+05 4.2814e+05 'TCONS_00000002' 3.5158e+05 3.7458e+05 3.4238e+05 1.0483e+05 1.1546e+05 1.1105e+05
Имена столбцов начиная с q имеют формат: conditionX_N, указывая, что столбец содержит значения для, реплицируют N conditionX.
transcriptsAnnot
— Имя файла аннотации расшифровки стенограммыИмя файла аннотации расшифровки стенограммы, заданного как строка или вектор символов. Файл может быть GTF или файлом GFF, произведенным cufflinks
, cuffcompare
, или другой источник аннотаций GTF.
Пример: "gyrAB.gtf"
Типы данных: char |
string
alignmentFiles
— Имена СЭМА, BAM или файлов CXBИмена СЭМА, BAM или файлов CXB, содержащих выравнивание, записывают для каждой выборки, заданной как векторный массив строки или массив ячеек. Если вы используете массив ячеек, каждый элемент должен быть вектором строки или массивом ячеек из символьных векторов, задающим файлы выравнивания для каждого реплицировать той же выборки.
Пример: ["Myco_1_1.sam", "Myco_2_1.sam"]
Типы данных: char |
string
| cell
opt
— cuffquant
опцииCuffQuantOptions
возразите | строка | вектор символовcuffquant
опции, заданные как CuffQuantOptions
объект, строка или вектор символов. Строка или вектор символов должны быть в исходном cuffquant
синтаксис опции (снабженный префиксом одним или двумя тире) [1].
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
cuffquant(transcripts,alignmentFiles,'NumThreads',4,'Seed',1)
'EffectiveLengthCorrection'
— Отметьте, чтобы нормировать количества фрагментаtrue
(значение по умолчанию) | ложьОтметьте, чтобы нормировать количества фрагмента к фрагментам на kilobase на миллион сопоставленных чтений (FPKM), заданный как true
или false
.
Пример: 'EffectiveLengthCorrection',false
Типы данных: логический
'ExtraCommand'
— Дополнительные команды""
(значение по умолчанию) | представляет в виде строки | вектор символовДополнительные команды, заданные как строка или вектор символов. Команды должны быть в исходном синтаксисе (снабжены префиксом одним или двумя тире). Используйте эту опцию, чтобы применить недокументированные флаги и флаги без соответствующих свойств MATLAB. Когда функция преобразует исходные флаги в свойства MATLAB, она хранит любые нераспознанные флаги в этой опции.
Пример: 'ExtraCommand','--library-type fr-secondstrand'
Типы данных: char |
string
'FragmentBiasCorrection'
— Имя файла FASTA со ссылочными расшифровками стенограммы, чтобы обнаружить смещениеИмя файла FASTA со ссылочными расшифровками стенограммы, чтобы обнаружить смещение в количествах фрагмента, заданных как строка или вектор символов. Подготовка библиотеки может ввести специфичное для последовательности смещение в эксперименты RNA-Seq. Обеспечение ссылочных расшифровок стенограммы улучшает точность оценок распространенности расшифровки стенограммы.
Пример:
'FragmentBiasCorrection',"bias.fasta"
Типы данных: char |
string
'FragmentLengthMean'
— Ожидаемая средняя длина фрагмента в парах оснований
(значение по умолчанию) | положительное целое числоОжидаемая средняя длина фрагмента, заданная как положительное целое число. Значением по умолчанию является 200
пары оснований. Функция может изучить среднее значение длины фрагмента для каждого файла SAM. Используя эту опцию не рекомендуется для чтений парного конца.
Пример: 'FragmentLengthMean',100
Типы данных: double
'FragmentLengthSD'
— Ожидаемое стандартное отклонение для распределения длины фрагмента
(значение по умолчанию) | положительная скалярная величинаОжидаемое стандартное отклонение для распределения длины фрагмента, заданного как положительная скалярная величина. Значением по умолчанию является 80
пары оснований. Функция может изучить стандартное отклонение длины фрагмента для каждого файла SAM. Используя эту опцию не рекомендуется для чтений парного конца.
Пример: 'FragmentLengthSD',70
Типы данных: double
'IncludeAll'
— Отметьте, чтобы применить все доступные параметрыfalse
(значение по умолчанию) | верныйОтметьте, чтобы включать все доступные параметры с соответствующими значениями по умолчанию при преобразовании в исходный синтаксис опций, заданный как true
или false
. Исходный синтаксис снабжается префиксом одним или двумя тире, такими как '-d 100 -e 80'
. По умолчанию функция преобразует только заданные опции. Если значением является true
, функция преобразует все доступные параметры, со значениями по умолчанию для незаданных опций, к исходному синтаксису.
Пример: 'IncludeAll',true
Типы данных: логический
'LengthCorrection'
— Отметьте, чтобы откорректировать длиной расшифровки стенограммыtrue
(значение по умолчанию) | false
Отметьте, чтобы откорректировать длиной расшифровки стенограммы, заданной как true
или false
. Установите это значение к false
только, когда количество фрагмента независимо от размера элемента, такой что касается небольших библиотек RNA без фрагментации и для 3' секвенирования конца, где все фрагменты имеют ту же длину.
Пример: 'LengthCorrection',false
Типы данных: логический
'MaskFile'
— Имя GTF или файла GFF, содержащего расшифровки стенограммы, чтобы проигнорироватьИмя GTF или файла GFF, содержащего расшифровки стенограммы, чтобы проигнорировать во время анализа, заданного как строка или вектор символов. Некоторые примеры расшифровок стенограммы, чтобы проигнорировать включают аннотируемые rRNA расшифровки стенограммы, митохондриальные расшифровки стенограммы и другие богатые расшифровки стенограммы. Игнорирование этих расшифровок стенограммы улучшает робастность оценок распространенности.
Пример: 'MaskFile',"excludes.gtf"
Типы данных: char |
string
'MaxBundleFrags'
— Максимальное количество фрагментов, чтобы включать для каждого местоположения перед пропуском
(значение по умолчанию) | положительное целое числоМаксимальное количество фрагментов, чтобы включать для каждого местоположения прежде, чем пропустить новые фрагменты, заданные как положительное целое число. Пропущенные фрагменты отмечены состоянием HIDATA
в файле skipped.gtf
.
Пример: 'MaxBundleFrags',400000
Типы данных: double
'MaxFragAlignments'
— Максимальное количество выровненных чтений, чтобы включать для каждого фрагментаInf
(значение по умолчанию) | положительное целое числоМаксимальное количество выровненных чтений, чтобы включать для каждого фрагмента прежде, чем пропустить новые чтения, заданные как положительное целое число. Inf
, значение по умолчанию, не устанавливает предела для максимального количества выровненных чтений.
Пример: 'MaxFragAlignments',1000
Типы данных: double
'MaxMLEIterations'
— Максимальное количество итераций для оценки наибольшего правдоподобия
(значение по умолчанию) | положительное целое числоМаксимальное количество итераций для оценки наибольшего правдоподобия распространенностей, заданных как положительное целое число.
Пример: 'MaxMLEIterations',4000
Типы данных: double
'MinAlignmentCount'
— Минимальное количество выравниваний требуется в местоположении для тестирования значения
(значение по умолчанию) | положительное целое числоМинимальное количество выравниваний, требуемых в местоположении выполнять тестирование значения на различия между выборками, заданными как положительное целое число.
Пример:
'MinAlignmentCount',8
Типы данных: double
'MultiReadCorrection'
— Отметьте, чтобы улучшить оценку распространенности с помощью спасательного методаfalse
(значение по умолчанию) | true
Отметьте, чтобы улучшить оценку распространенности для чтений, сопоставленных с несколькими геномными положениями с помощью спасательного метода, заданного как true
или false
. Если значением является false
, функция делит мультисопоставленные чтения однородно ко всем сопоставленным позициям. Если значением является true
, функция использует дополнительную информацию, включая генную оценку распространенности, выведенную длину фрагмента, и смещение фрагмента, чтобы улучшить оценку распространенности расшифровки стенограммы.
Спасательный метод описан в [2].
Пример: 'MultiReadCorrection',true
Типы данных: логический
'NumThreads'
— Количество параллельных потоков, чтобы использовать
(значение по умолчанию) | положительное целое числоКоличество параллельных потоков, чтобы использовать, заданный как положительное целое число. Потоки запущены на отдельных процессорах или ядрах. Увеличение числа потоков обычно значительно улучшает время выполнения, но увеличивает объем потребляемой памяти.
Пример: 'NumThreads',4
Типы данных: double
'OutputDirectory'
— Директория, чтобы сохранить результаты анализаcurrentDirectory
) (значение по умолчанию) | представляет в виде строки | вектор символовДиректория, чтобы сохранить результаты анализа, заданные как строка или вектор символов.
Пример: "./AnalysisResults/"
Типы данных: char |
string
'Seed'
— Отберите для генератора случайных чисел
(значение по умолчанию) | неотрицательное целое числоОтберите для генератора случайных чисел, заданного как неотрицательное целое число. Устанавливание значения seed гарантирует воспроизводимость результатов анализа.
Пример: 10
Типы данных: double
cxbFile
— Имя файла распространенностей"./abundances.cxb"
Имя файла распространенностей, возвращенного как строка.
Выводимая строка также включает информацию о директории, заданную OutputDirectory
. Значением по умолчанию является текущий каталог. Если вы устанавливаете OutputDirectory
к "/local/tmp/"
, выход становится "/local/tmp/abundances.cxb"
.
[1] Trapnell, C., Б. Уильямс, Г. Пертеа, А. Мортэзэви, Г. Кван, Дж. ван Бэрен, С. Залцберг, B. Пустошь и Л. Пэчтер. 2010. Блок расшифровки стенограммы и квантификация RNA-Seq показывают неаннотируемые расшифровки стенограммы и изоформу, переключающуюся во время клеточной дифференцировки.
[2] Mortazavi, A., Б. Уильямс, К. Макку, Л. Шэеффер и Б. Уолд. 2008. Отображение и определение количества транскриптомов млекопитающих RNA-Seq. Методы природы. 5:621-628.
CuffQuantOptions
| CufflinksOptions
| cuffcompare
| cuffdiff
| cuffgffread
| cuffgtf2sam
| cufflinks
| cuffmerge
| cuffnorm
| cuffquant
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.