sdeld

SDE с моделью Linear Drift

Описание

Создает и отображает объекты SDE, уровень дрейфа которых выражается в линейной форме уровня дрейфа и которые выводят из sdeddo (SDE от дрейфа и диффузии возражает классу).

Используйте sdeld объекты симулировать демонстрационные пути NVARS переменные состояния выражаются в линейной форме уровня дрейфа. Они обеспечивают параметрическую альтернативу возвращающейся среднее значение форме дрейфа (см. sdemrd).

Эти переменные состояния управляются NBROWNS Источники броуновского движения риска по NPERIODS последовательные периоды наблюдения, аппроксимируя стохастические процессы непрерывного времени линейными функциями уровня дрейфа.

sdeld объект позволяет вам симулировать любой SDELD с векторным знаком формы:

dXt=(A(t)+B(t)Xt)dt+D(t,Xtα(t))V(t)dWt

где:

  • Xt является NVARS- 1 вектор состояния переменных процесса.

  • A является NVARS- 1 вектор.

  • B является NVARS- NVARS матрица.

  • D является NVARS- NVARS диагональная матрица, где каждый элемент по основной диагонали является соответствующим элементом вектора состояния, повышенного до соответствующей степени α.

  • V является NVARS- NBROWNS мгновенная матрица уровня энергозависимости.

  • dWt является NBROWNS- 1 Вектор броуновского движения.

Создание

Описание

пример

SDELD = sdeld(A,B,Alpha,Sigma) создает SDELD по умолчанию объект.

пример

SDELD = sdeld(___,Name,Value) создает SDELD объект с дополнительными опциями, заданными одним или несколькими Name,Value парные аргументы.

Name имя свойства и Value его соответствующее значение. Name должен появиться в одинарных кавычках (''). Можно задать несколько аргументов пары "имя-значение" в любом порядке как Name1,Value1,…,NameN,ValueN.

SDELD объект имеет следующие отображенные Свойства:

  • StartTime — Начальное время наблюдения

  • StartState — Начальное состояние во время StartTime

  • Correlation — Функция доступа для Correlation входной параметр, вызываемый как функция времени

  • Drift — Составная функция уровня дрейфа, вызываемая как функция времени и состояния

  • Diffusion — Составная функция уровня диффузии, вызываемая как функция времени и состояния

  • A — Функция доступа для входного параметра A, вызываемый как функция времени и состояния

  • B — Функция доступа для входного параметра B, вызываемый как функция времени и состояния

  • Alpha — Функция доступа для входного параметра Alpha, вызываемый как функция времени и состояния

  • Sigma — Функция доступа для входного параметра Sigma, вызываемый как функция времени и состояния

  • Simulation — Функция симуляции или метод

Входные параметры

развернуть все

A представляет параметр A, заданный как массив или детерминированная функция времени.

Если вы задаете A как массив, это должен быть NVARS- 1 вектор-столбец прерываний.

Как детерминированная функция времени, когда A вызван скалярным временем с действительным знаком t как его единственный вход, A должен произвести NVARS- 1 вектор-столбец. Если вы задаете A как функция времени и состояния, это должно сгенерировать NVARS- 1 вектор-столбец прерываний, когда вызвано с двумя входными параметрами:

  • Скалярное время наблюдения с действительным знаком t.

  • NVARS- 1 вектор состояния Xt.

Типы данных: double | function_handle

B представляет параметр B, заданный как массив или детерминированная функция времени.

Если вы задаете A как массив, это должен быть NVARS- NVARS матрица коэффициентов вектора состояния.

Как детерминированная функция времени, когда B вызван скалярным временем с действительным знаком t как его единственный вход, B должен произвести NVARS- NVARS матрица. Если вы задаете B как функция времени и состояния, это должно сгенерировать NVARS- NVARS матрица коэффициентов вектора состояния, когда вызвано с двумя входными параметрами:

  • Скалярное время наблюдения с действительным знаком t.

  • NVARS- 1 вектор состояния Xt.

Типы данных: double | function_handle

Alpha представляет параметр D, заданный как массив или детерминированная функция времени.

Если вы задаете Alpha как массив, это представляет NVARS- 1 вектор-столбец экспонент.

Как детерминированная функция времени, когда Alpha вызван скалярным временем с действительным знаком t как его единственный вход, Alpha должен произвести NVARS- 1 матрица.

Если вы задаете его как функцию времени и состояния, Alpha должен возвратить NVARS- 1 вектор-столбец экспонент, когда вызвано с двумя входными параметрами:

  • Скалярное время наблюдения с действительным знаком t.

  • NVARS- 1 вектор состояния Xt.

Типы данных: double | function_handle

Sigma представляет параметр V, заданный как массив или детерминированная функция времени.

Если вы задаете Sigma как массив, это должен быть NVARS- NBROWNS матрица мгновенных уровней энергозависимости или как детерминированная функция времени. В этом случае, каждая строка Sigma соответствует конкретной переменной состояния. Каждый столбец соответствует конкретному Броуновскому источнику неопределенности и сопоставляет величину воздействия переменных состояния с источниками неопределенности.

Как детерминированная функция времени, когда Sigma вызван скалярным временем с действительным знаком t как его единственный вход, Sigma должен произвести NVARS- NBROWNS матрица. Если вы задаете Sigma как функция времени и состояния, это должно возвратить NVARS- NBROWNS матрица уровней энергозависимости, когда вызвано с двумя входными параметрами:

  • Скалярное время наблюдения с действительным знаком t.

  • NVARS- 1 вектор состояния Xt.

Несмотря на то, что thegbm конструктор не осуществляет ограничений на знак Sigma колебания, они заданы как положительные значения.

Типы данных: double | function_handle

Примечание

Несмотря на то, что sdeld не осуществляет ограничения на знаки Alpha или Sigma, каждый параметр задан как положительное значение.

Свойства

развернуть все

Время начала первого наблюдения, к которому применяются все переменные состояния, заданные как скаляр

Типы данных: double

Начальные значения переменных состояния, заданных как скаляр, вектор-столбец или матрица.

Если StartState скаляр, sdeld применяет то же начальное значение ко всем переменным состояния на всех испытаниях.

Если StartState вектор-столбец, sdeld применяет уникальное начальное значение к каждой переменной состояния на всех испытаниях.

Если StartState матрица, sdeld применяет уникальное начальное значение к каждой переменной состояния на каждом испытании.

Типы данных: double

Корреляция между Гауссовыми случайными варьируемыми величинами, чертившими, чтобы сгенерировать вектор Броуновского движения (винеровские процессы), заданный как NBROWNS- NBROWNS положительная полуопределенная матрица, или как детерминированный функциональный C(t), который принимает текущее время t и возвращает NBROWNS- NBROWNS положительная полуопределенная корреляционная матрица. Если Correlation не симметричная положительная полуопределенная матрица, используйте nearcorr создать положительную полуопределенную матрицу для корреляционной матрицы.

Correlation матрица представляет статическое условие.

Как детерминированная функция времени, Correlation позволяет вам задавать динамическую структуру корреляции.

Типы данных: double

Пользовательская функция симуляции или метод симуляции SDE, определенный функцией или метод симуляции SDE.

Типы данных: function_handle

Это свойство доступно только для чтения.

Компонент уровня дрейфа непрерывного времени стохастические дифференциальные уравнения (SDEs), заданный как дрейф, возражает или функция, доступная (t, Xt.

Спецификация уровня дрейфа поддерживает симуляцию демонстрационных путей NVARS переменные состояния управляются NBROWNS Источники броуновского движения риска по NPERIODS последовательные периоды наблюдения, аппроксимируя стохастические процессы непрерывного времени.

drift класс позволяет вам создавать объекты уровня дрейфа с помощью drift из формы:

F(t,Xt)=A(t)+B(t)Xt

где:

  • A NVARS- 1 функциональное доступное использование с векторным знаком (t, Xt) интерфейс.

  • B NVARS- NVARS функциональное доступное использование с матричным знаком (t, Xt) интерфейс.

Отображенные параметры для drift объект:

  • Rate: Функция уровня дрейфа, F(t,Xt)

  • A: Термин прерывания, A(t,Xt), F(t,Xt)

  • B: Термин первого порядка, B(t,Xt), F(t,Xt)

A и B позвольте вам запросить исходные входные параметры. Функция сохранена в Rate полностью инкапсулирует совместное воздействие A и B.

Когда задано как двойные массивы MATLAB®, входные параметры A и B ясно сопоставлены с линейным уровнем дрейфа параметрическая форма. Однако определение любого A или B когда функция позволяет вам настраивать фактически любую спецификацию уровня дрейфа.

Примечание

Можно выразить drift и diffusion классы в самой общей форме, чтобы подчеркнуть функциональное (t, Xt) интерфейс. Однако можно задать компоненты A и B как функции, которые придерживаются общего (t, Xt) интерфейс, или как массивы MATLAB соответствующей размерности.

Пример: F = drift(0, 0.1) % Drift rate function F(t,X)

Типы данных: struct | double

Это свойство доступно только для чтения.

Компонент уровня диффузии непрерывного времени стохастические дифференциальные уравнения (SDEs), заданный как дрейф, возражает или функция, доступная (t, Xt.

Спецификация уровня диффузии поддерживает симуляцию демонстрационных путей NVARS переменные состояния управляются NBROWNS Источники броуновского движения риска по NPERIODS последовательные периоды наблюдения, аппроксимируя стохастические процессы непрерывного времени.

diffusion класс позволяет вам создавать объекты уровня диффузии с помощью diffusion:

G(t,Xt)=D(t,Xtα(t))V(t)

где:

  • D NVARS- NVARS диагональная функция с матричным знаком.

  • Каждый диагональный элемент D соответствующий элемент вектора состояния, повышенного до соответствующего элемента экспоненты Alpha, который является NVARS- 1 функция с векторным знаком.

  • V NVARS- NBROWNS уровень энергозависимости с матричным знаком функционирует Sigma.

  • Alpha и Sigma также доступное использование (t, Xt) интерфейс.

Отображенные параметры для diffusion объект:

  • Rate: Функция уровня диффузии, G(t,Xt).

  • Alpha: Экспонента вектора состояния, которая определяет формат D(t,Xt) G(t,Xt).

  • Sigma: Уровень энергозависимости, V(t,Xt), G(t,Xt).

Alpha и Sigma позвольте вам запросить исходные входные параметры. (Совместное воздействие отдельного Alpha и Sigma параметры полностью инкапсулируются функцией, сохраненной в Rate.) Rate функции являются механизмами вычисления для drift и diffusion объекты, и являются единственными параметрами, требуемыми для симуляции.

Примечание

Можно выразить drift и diffusion классы в самой общей форме, чтобы подчеркнуть функциональное (t, Xt) интерфейс. Однако можно задать компоненты A и B как функции, которые придерживаются общего (t, Xt) интерфейс, или как массивы MATLAB соответствующей размерности.

Пример: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Типы данных: struct | double

Функции объекта

interpolateБроуновская интерполяция стохастических дифференциальных уравнений
simulateСимулируйте многомерные стохастические дифференциальные уравнения (SDEs)
simByEulerЭйлерова симуляция стохастических дифференциальных уравнений (SDEs)

Примеры

свернуть все

sdeld класс выводит из sdeddo класс. Эти объекты позволяют вам симулировать коррелируемые пути NVARS переменные состояния выразили в линейной форме уровня дрейфа: dXt=(A(t)+B(t)Xt)dt+D(t,Xtα(t))V(t)dWt.

obj = sdeld(0, 0.1, 1, 0.3) % (A, B, Alpha, Sigma)
obj = 
   Class SDELD: SDE with Linear Drift
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
              A: 0
              B: 0.1
          Alpha: 1
          Sigma: 0.3

sdeld объекты обеспечивают параметрическую альтернативу возвращающейся среднее значение форме дрейфа и также обеспечивают альтернативный интерфейс к sdeddo родительский класс, потому что можно создать объект, сначала не имея необходимость создать его дрейф и компоненты уровня диффузии.

Больше о

развернуть все

Алгоритмы

Когда вы задаете необходимые входные параметры как массивы, они сопоставлены с определенной параметрической формой. В отличие от этого, когда вы задаете любой необходимый входной параметр как функцию, можно настроить фактически любую спецификацию.

Доступ к выходным параметрам без входных параметров просто возвращает исходную входную спецификацию. Таким образом, когда вы вызываете эти параметры без входных параметров, они ведут себя как простые свойства и позволяют вам тестировать тип данных (удвойтесь по сравнению с функцией, или эквивалентно, статические по сравнению с динамическим) исходной входной спецификации. Это полезно для проверки и разработки методов.

Когда вы вызываете эти параметры с входными параметрами, они ведут себя как функции, производя впечатление динамического поведения. Параметры принимают время наблюдения t и вектор состояния Xt, и возвращают массив соответствующей размерности. Даже если вы первоначально задали вход как массив, sdeld обработки это, когда статическая функция времени и состояния, этим означает гарантировать, что все параметры доступны тем же интерфейсом.

Ссылки

[1] Островок-Sahalia, Y. “Тестируя Модели Непрерывного времени Точечной Процентной ставки”. Анализ Финансовых Исследований, Spring 1996, Издания 9, № 2, стр 385–426.

[2] Островок-Sahalia, Y. “Плотность перехода для процентной ставки и другой нелинейной диффузии”. Журнал финансов, издания 54, № 4, август 1999.

[3] Глассермен, P. Методы Монте-Карло в финансовой разработке. Нью-Йорк, Springer-Verlag, 2004.

[4] Оболочка, J. C. Опции, фьючерсы и Другие Производные, 5-й редактор Englewood Cliffs, NJ: Prentice Hall, 2002.

[5] Джонсон, N. L. С. Коц и Н. Бэлэкришнэн. Непрерывные Одномерные распределения. Издание 2, 2-й редактор Нью-Йорк, John Wiley & Sons, 1995.

[6] Shreve, S. E. Стохастическое исчисление для финансов II: модели непрерывного времени. Нью-Йорк: Springer-Verlag, 2004.

Введенный в R2008a

Для просмотра документации необходимо авторизоваться на сайте