bjOptions

Опция установлена для bj

Синтаксис

opt = bjOptions
opt = bjOptions(Name,Value)

Описание

opt = bjOptions создает набор опций по умолчанию для bj.

opt = bjOptions(Name,Value) создает набор опции с опциями, заданными одним или несколькими Name,Value парные аргументы.

Входные параметры

свернуть все

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Обработка начальных условий во время оценки, заданной как одно из следующих значений:

  • 'zero' — Начальные условия обнуляются.

  • 'estimate' — Начальные условия обработаны как независимые параметры оценки.

  • 'backcast' — Начальные условия оцениваются с помощью лучшего метода наименьших квадратов.

  • 'auto' — Программное обеспечение выбирает метод, чтобы обработать начальные условия на основе данных об оценке.

Ошибка, которая будет минимизирована в функции потерь во время оценки, заданной как разделенная запятой пара, состоящая из 'Focus' и одно из следующих значений:

  • 'prediction' — Один шаг вперед ошибка прогноза между измеренными и предсказанными выходными параметрами минимизирован во время оценки. В результате оценка фокусируется на создании хорошей модели предиктора.

  • 'simulation' — Ошибка симуляции между измеренными и симулированными выходными параметрами минимизирована во время оценки. В результате оценка фокусируется на создании подходящего варианта для симуляции ответа модели с текущими входными параметрами.

Focus опция может быть интерпретирована, когда взвешивание просачивается функция потерь. Для получения дополнительной информации смотрите Функцию потерь и Метрики качества Модели.

Взвешивание предварительного фильтра применилось к функции потерь, которая будет минимизирована во время оценки. Изучать эффект WeightingFilter на функции потерь смотрите Функцию потерь и Метрики качества Модели.

Задайте WeightingFilter как одно из следующих значений:

  • [] — Никакой предварительный фильтр взвешивания не используется.

  • Полосы пропускания — Задают вектор-строку или матрицу, содержащую значения частоты, которые задают желаемые полосы пропускания. Вы выбираете диапазон частот, где подгонка между предполагаемой моделью и данными об оценке оптимизирована. Например, [wl,wh], где wl и wh представляйте нижние и верхние пределы полосы пропускания. Для матрицы с несколькими строками, задающими полосы пропускания частоты, [w1l,w1h;w2l,w2h;w3l,w3h;...], алгоритм оценки использует объединение частотных диапазонов, чтобы задать полосу пропускания оценки.

    Полосы пропускания выражаются в rad/TimeUnit для данных временного интервала и в FrequencyUnit для данных частотного диапазона, где TimeUnit и FrequencyUnit время и единицы частоты данных об оценке.

  • Фильтр SISO — Задает линейный фильтр одного входа одного выхода (SISO) одним из следующих способов:

    • Модель SISO LTI

    • {A,B,C,D} формат, который задает матрицы пространства состояний фильтра с тем же шагом расчета как данные об оценке.

    • {numerator,denominator} формат, который задает числитель и знаменатель фильтра как передаточная функция с тем же шагом расчета как данные об оценке.

      Эта опция вычисляет функцию взвешивания как продукт фильтра и входного спектра, чтобы оценить передаточную функцию.

Управляйте, осуществить ли устойчивость предполагаемой модели, заданной как разделенная запятой пара, состоящая из 'EnforceStability' и любой true или false.

Типы данных: логический

Средства управления, сгенерированы ли данные о ковариации параметра, задали как true или false.

Если EstimateCovariance true, затем используйте getcov выбирать ковариационную матрицу из предполагаемой модели.

Задайте, отобразить ли прогресс оценки, заданный как одно из следующих значений:

  • 'on' — Информация о структуре модели и результатах оценки отображена в окне средства просмотра прогресса.

  • 'off' — Никакая информация о прогрессе или результатах отображена.

Удаление смещения от входных данных временного интервала во время оценки, заданной как разделенная запятой пара, состоящая из 'InputOffset' и одно из следующего:

  • Вектор-столбец положительных целых чисел длины Nu, где Nu является количеством входных параметров.

  • [] — Не указывает ни на какое смещение.

  • Nu-by-Ne матрица — Для данных мультиэксперимента, задайте InputOffset как Nu-by-Ne матрица. Nu является количеством входных параметров, и Ne является количеством экспериментов.

Каждая запись задана InputOffset вычтен из соответствующих входных данных.

Удаление смещения от выходных данных временного интервала во время оценки, заданной как разделенная запятой пара, состоящая из 'OutputOffset' и одно из следующего:

  • Вектор-столбец длины Ny, где Ny является количеством выходных параметров.

  • [] — Не указывает ни на какое смещение.

  • Ny-by-Ne матрица — Для данных мультиэксперимента, задайте OutputOffset как Ny-by-Ne матрица. Ny является количеством выходных параметров, и Ne является количеством экспериментов.

Каждая запись задана OutputOffset вычтен из соответствующих выходных данных.

Опции для упорядоченной оценки параметров модели. Для получения дополнительной информации о регуляризации смотрите Упорядоченные Оценки Параметров модели.

Regularization структура со следующими полями:

  • Lambda — Постоянный, который определяет смещение по сравнению с компромиссом отклонения.

    Задайте положительную скалярную величину, чтобы добавить срок регуляризации в стоимость оценки.

    Значение по умолчанию нуля не подразумевает регуляризации.

    Значение по умолчанию: 0

  • R — Взвешивание матрицы.

    Задайте вектор неотрицательных чисел или квадратной положительной полуопределенной матрицы. Длина должна быть равна количеству свободных параметров модели.

    Для моделей черного ящика, с помощью значения по умолчанию рекомендуется. Для структурированного и моделей серого ящика, можно также задать вектор np положительные числа, таким образом, что каждая запись обозначает уверенность в значении связанного параметра.

    Значение по умолчанию 1 подразумевает значение eye(npfree), где npfree количество свободных параметров.

    Значение по умолчанию: 1

  • Nominal — Номинальная стоимость, к которой свободные параметры вытягивают во время оценки.

    Значение по умолчанию нуля подразумевает, что значения параметров вытягивают по направлению к нулю. Если вы совершенствовали модель, можно установить значение к 'model' вытягивать параметры к значениям параметров первоначальной модели. Начальные значения параметров должны быть конечными для этого принимающегося за работу.

    Значение по умолчанию: 0

Числовой метод поиска используется в итеративной оценке параметра, заданной как разделенная запятой пара, состоящая из 'SearchMethod' и одно из следующего:

  • 'auto' — Комбинация алгоритмов поиска линии, 'gn', 'lm', 'gna', и 'grad' методы пробуют в последовательности в каждой итерации. Первое продвижение направления спуска к сокращению стоимости оценки используется.

  • 'gn' — Поиск наименьших квадратов Ньютона Гаусса подпространства. Сингулярные значения якобиевской матрицы меньше, чем GnPinvConstant*eps*max(size(J))*norm(J) отбрасываются при вычислении поискового направления. J является якобиевской матрицей. Матрица Гессиана аппроксимирована как JTJ. Если нет никакого улучшения этого направления, функция пробует направление градиента.

  • 'gna' — Адаптивный поиск Ньютона Гаусса подпространства. Собственные значения меньше, чем gamma*max(sv) из Гессиана проигнорированы, где sv содержит сингулярные значения Гессиана. Направление Ньютона Гаусса вычисляется в остающемся подпространстве. gamma имеет начальное значение InitialGnaTolerance (см. Advanced в 'SearchOptions' для получения дополнительной информации. Это значение увеличено факторным LMStep каждый раз поиску не удается найти нижнее значение критерия меньше чем в пяти делениях пополам. Это значение уменьшено факторным 2*LMStep каждый раз поиск успешен без любых делений пополам.

  • 'lm' — Поиск наименьших квадратов Levenberg-Marquardt, где следующим значением параметров является -pinv(H+d*I)*grad от предыдущего. H является Гессиан, I является единичной матрицей, и grad является градиентом. d является числом, которое увеличено, пока нижнее значение критерия не найдено.

  • 'grad' — Поиск наименьших квадратов быстрейшего спуска.

  • 'lsqnonlin' — Доверительная область отражающий алгоритм lsqnonlin. Программное обеспечение Requires Optimization Toolbox™.

  • 'fmincon' — Ограниченные нелинейные решатели. Можно использовать последовательное квадратичное программирование (SQP) и доверять области отражающие алгоритмы fmincon решатель. Если у вас есть программное обеспечение Optimization Toolbox, можно также использовать внутреннюю точку и алгоритмы активного набора fmincon решатель. Задайте алгоритм в SearchOptions.Algorithm опция. fmincon алгоритмы могут привести к улучшенным результатам оценки в следующих сценариях:

    • Ограниченные проблемы минимизации, когда существуют границы, наложенные на параметры модели.

    • Структуры модели, где функция потерь является нелинейным или не сглаженной функцией параметров.

    • Мультивыведите оценку модели. Определяющая функция потерь минимизирована по умолчанию для мультивыходной оценки модели. fmincon алгоритмы могут минимизировать такие функции потерь непосредственно. Другие методы поиска, такие как 'lm' и 'gn' минимизируйте определяющую функцию потерь путем альтернативной оценки шумового отклонения и сокращения значения потерь для данного шумового значения отклонения. Следовательно, fmincon алгоритмы могут предложить лучший КПД и точность для мультивыходных оценок модели.

Набор опции для алгоритма поиска, заданного как разделенная запятой пара, состоящая из 'SearchOptions' и набор параметра поиска с полями, которые зависят от значения SearchMethod.

SearchOptions Структура, когда SearchMethod Задан как 'gn', 'gna', 'lm', 'grad', или 'auto'

Имя поляОписаниеЗначение по умолчанию
Tolerance

Минимальная процентная разница между текущим значением функции потерь и ее ожидаемым улучшением после следующей итерации, заданной как положительная скалярная величина. Когда процент ожидаемого улучшения меньше Tolerance, остановка итераций. Оценка ожидаемого улучшения функции потерь в следующей итерации основана на векторе Ньютона Гаусса, вычисленном для текущего значения параметров.

0.01
MaxIterations

Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются когда MaxIterations достигнут или другому критерию остановки удовлетворяют, такие как Tolerance.

Установка MaxIterations = 0 возвращает результат процедуры запуска.

Используйте sys.Report.Termination.Iterations получить фактическое количество итераций во время оценки, где sys является idtf модель.

20
Advanced

Настройки расширенного поиска, заданные как структура со следующими полями:

Имя поляОписаниеЗначение по умолчанию
GnPinvConstant

Якобиевский матричный порог сингулярного значения, заданный как положительная скалярная величина. Сингулярные значения якобиевской матрицы, которые меньше, чем GnPinvConstant*max(size(J)*norm(J)*eps) отбрасываются при вычислении поискового направления. Применимый, когда SearchMethod 'gn'.

10000
InitialGnaTolerance

Начальное значение gamma, заданного как положительная скалярная величина. Применимый, когда SearchMethod 'gna'.

0.0001
LMStartValue

Начальное значение длины поискового направления d в методе Levenberg-Marquardt, заданном как положительная скалярная величина. Применимый, когда SearchMethod 'lm'.

0.001
LMStep

Размер шага Levenberg-Marquardt, заданного как положительное целое число. Следующим значением длины поискового направления d в методе Levenberg-Marquardt является LMStep времена предыдущее. Применимый, когда SearchMethod 'lm'.

2
MaxBisections

Максимальное количество делений пополам, используемых в линии, ищет вдоль поискового направления, заданного как положительное целое число.

25
MaxFunctionEvaluations

Максимальное количество вызовов файла модели, заданного как положительное целое число. Итерации останавливаются, если количество вызовов файла модели превышает это значение.

Inf
MinParameterChange

Самое маленькое обновление параметра позволено на итерацию, заданную как неотрицательный скаляр.

0
RelativeImprovement

Относительный порог улучшения, заданный как неотрицательный скаляр. Итерации останавливаются, если относительное улучшение оценочной функции меньше этого значения.

0
StepReduction

Фактор сокращения шага, заданный как положительная скалярная величина, которая больше 1. Предложенное обновление параметра уменьшается факторным StepReduction после каждой попытки. Это сокращение продолжается до MaxBisections попытки завершаются, или нижнее значение оценочной функции получено.

StepReduction не применимо для SearchMethod 'lm' (Метод Levenberg-Marquardt).

2

SearchOptions Структура, когда SearchMethod Задан как 'lsqnonlin'

Имя поляОписаниеЗначение по умолчанию
FunctionTolerance

Допуск завершения на функции потерь, которую программное обеспечение минимизирует, чтобы определить предполагаемые значения параметров, заданные как положительная скалярная величина.

Значение FunctionTolerance совпадает с тем из opt.SearchOptions.Advanced.TolFun.

1e-5
StepTolerance

Допуск завершения на предполагаемых значениях параметров, заданных как положительная скалярная величина.

Значение StepTolerance совпадает с тем из opt.SearchOptions.Advanced.TolX.

1e-6
MaxIterations

Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются когда MaxIterations достигнут или другому критерию остановки удовлетворяют, такие как FunctionTolerance.

Значение MaxIterations совпадает с тем из opt.SearchOptions.Advanced.MaxIter.

20
Advanced

Настройки расширенного поиска, заданные как опция, установлены для lsqnonlin.

Для получения дополнительной информации см. таблицу Optimization Options в Опциях Оптимизации (Optimization Toolbox).

Используйте optimset('lsqnonlin') создать набор опции по умолчанию.

SearchOptions Структура, когда SearchMethod Задан как 'fmincon'

Имя поляОписаниеЗначение по умолчанию
Algorithm

fmincon алгоритм оптимизации, заданный как одно из следующего:

  • 'sqp' — Последовательный алгоритм квадратичного программирования. Алгоритм удовлетворяет границам во всех итерациях, и он может восстановиться с NaN или Inf результаты. Это не крупномасштабный алгоритм. Для получения дополнительной информации смотрите Крупномасштабный по сравнению с Алгоритмами Средней шкалы (Optimization Toolbox).

  • 'trust-region-reflective' — Метод доверительной области подпространства на основе внутреннего отражающего метода Ньютона. Это - крупномасштабный алгоритм.

  • 'interior-point' — Крупномасштабный алгоритм, который требует программного обеспечения Optimization Toolbox. Алгоритм удовлетворяет границам во всех итерациях, и он может восстановиться с NaN или Inf результаты.

  • 'active-set' — Программное обеспечение Requires Optimization Toolbox. Алгоритм может сделать большие шаги, который добавляет скорость. Это не крупномасштабный алгоритм.

Для получения дополнительной информации об алгоритмах, см. Ограниченные Нелинейные Алгоритмы Оптимизации (Optimization Toolbox) и Выбор Algorithm (Optimization Toolbox).

'sqp'
FunctionTolerance

Допуск завершения на функции потерь, которую программное обеспечение минимизирует, чтобы определить предполагаемые значения параметров, заданные как положительная скалярная величина.

1e-6
StepTolerance

Допуск завершения на предполагаемых значениях параметров, заданных как положительная скалярная величина.

1e-6
MaxIterations

Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются когда MaxIterations достигнут или другому критерию остановки удовлетворяют, такие как FunctionTolerance.

100

Дополнительные расширенные настройки, заданные как структура со следующими полями:

  • ErrorThreshold — Задает, когда настроить вес больших ошибок от квадратичного до линейного.

    Ошибки, больше, чем ErrorThreshold времена предполагаемое стандартное отклонение имеют линейный вес в функции потерь. Стандартное отклонение оценивается надежно как медиана абсолютных отклонений от медианы ошибок прогноза, разделенных на 0.7. Для получения дополнительной информации об устойчивом выборе нормы смотрите раздел 15.2 из [2].

      ErrorThreshold = 0 отключает robustification и приводит к чисто квадратичной функции потерь. При оценке с данными частотного диапазона программное обеспечение устанавливает ErrorThreshold обнулять. Для данных временного интервала, которые содержат выбросы, попробуйте установку ErrorThreshold к 1.6.

    Значение по умолчанию: 0

  • MaxSize — Задает максимальное количество элементов в сегменте, когда данные ввода - вывода разделены в сегменты.

    MaxSize должно быть положительное целое число.

    Значение по умолчанию: 250000

  • StabilityThreshold — Задает пороги для тестов устойчивости.

    StabilityThreshold структура со следующими полями:

    • s — Задает местоположение самого правого полюса, чтобы протестировать устойчивость моделей непрерывного времени. Модель рассматривается устойчивой, когда ее самый правый полюс слева от s.

      Значение по умолчанию: 0

    • z — Задает максимальное расстояние всех полюсов от источника, чтобы протестировать устойчивость моделей дискретного времени. Модель рассматривается устойчивой, если всеми полюсами является на расстоянии z от источника.

      Значение по умолчанию: 1+sqrt(eps)

  • AutoInitThreshold — Задает, когда автоматически оценить начальное условие.

    Начальное условие оценивается когда

    yp,zymeasyp,eymeas>AutoInitThreshold

    • ymeas является измеренный выход.

    • yp,z является предсказанный выход модели, оцененной с помощью нулевых начальных состояний.

    • yp,e является предсказанный выход модели, оцененной с помощью оцененных начальных состояний.

    Применимый, когда InitialCondition 'auto'.

    Значение по умолчанию: 1.05

Выходные аргументы

свернуть все

Опция установлена для bj, возвращенный как bjOptions опция установлена.

Примеры

свернуть все

opt = bjOptions;

Создайте набор опций для bj использование нулевых начальных условий для оценки. Установите Display к 'on'.

opt = bjOptions('InitialCondition','zero','Display','on');

В качестве альтернативы используйте запись через точку, чтобы установить значения opt.

opt = bjOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';

Вопросы совместимости

развернуть все

Ссылки

[1] Завещания, Эдриан, Б. Ниннесс и С. Гибсон. “На основанном на градиенте поиске многомерных системных оценок”. Продолжения 16-го мирового Конгресса IFAC, Прага, Чешская Республика, 3-8 июля 2005. Оксфорд, Великобритания: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: теория для пользователя. Верхний Сэддл-Ривер, NJ: PTR Prentice Hall, 1999.

Представленный в R2012a

Для просмотра документации необходимо авторизоваться на сайте