Самые близкие соседи

k самая близкая классификация соседей с помощью Kd - поиск по дереву

Чтобы обучить k - самая близкая соседняя модель, используйте приложение Classification Learner. Для большей гибкости обучите k - самая близкая соседняя модель использование fitcknn в интерфейсе командной строки. После обучения предскажите метки или оцените апостериорные вероятности путем передачи модели и данных о предикторе к predict.

Приложения

Classification LearnerОбучите модели классифицировать данные с помощью машинного обучения с учителем

Функции

развернуть все

fitcknnПодходящий классификатор k - ближайших соседей
ExhaustiveSearcherСоздайте исчерпывающего самого близкого соседнего искателя
KDTreeSearcherСоздайте Kd-дерево самый близкий соседний искатель
creatensСоздайте самый близкий соседний объект искателя
crossvalПерекрестный подтвержденный классификатор k - ближайших соседей
kfoldEdgeРебро классификации для наблюдений, не используемых в обучении
kfoldLossПотеря классификации для наблюдений, не используемых в обучении
kfoldfunКрест подтверждает функцию
kfoldMarginПоля классификации для наблюдений, не используемых в обучении
kfoldPredictПредскажите ответ для наблюдений, не используемых в обучении
lossПотеря классификатора k - ближайших соседей
resubLossПотеря классификатора k - ближайших соседей перезаменой
compareHoldoutСравните точность двух моделей классификации с помощью новых данных
edgeРебро классификатора k - ближайших соседей
marginПоле классификатора k - ближайших соседей
resubEdgeРебро классификатора k - ближайших соседей перезаменой
resubMarginПоле классификатора k - ближайших соседей перезаменой
predictПредскажите метки с помощью модели классификации k - ближайших соседей
resubPredictПредскажите метки перезамены классификатора k - ближайших соседей
pdistПопарное расстояние между парами наблюдений
pdist2Попарное расстояние между двумя наборами наблюдений

Объекты

развернуть все

ClassificationKNNклассификация k - ближайших соседей
ClassificationPartitionedModelПерекрестная подтвержденная модель классификации

Темы

Обучите самые близкие соседние классификаторы Используя приложение Classification Learner

Создайте и сравните самые близкие соседние классификаторы и экспортируйте обученные модели, чтобы сделать прогнозы для новых данных.

Визуализируйте поверхности решения различных классификаторов

В этом примере показано, как визуализировать поверхность решения для различных алгоритмов классификации.

Контролируемое изучение рабочего процесса и алгоритмов

Изучите шаги для контролируемого изучения и характеристик непараметрической классификации и функций регрессии.

Классификация Используя самых близких соседей

Категоризируйте точки данных на основе их расстояния до точек в обучающем наборе данных, с помощью множества метрик расстояния.

Сопутствующая информация