mdwtdec

Разложение вейвлета мультисигнала 1-D

Описание

пример

dec = mdwtdec(dirdec,x,lev,wname) возвращает 1D дискретное разложение вейвлета на уровне lev из каждой строки или каждого столбца матричного x, использование вейвлета wname.

dec = mdwtdec(dirdec,x,lev,LoD,HiD,LoR,HiR) использует заданный lowpass, и highpass разложение вейвлета фильтрует LoD и HiD, соответственно, и lowpass и highpass реконструкция вейвлета фильтруют LoR и HiR, соответственно.

dec = mdwtdec(___,'mode',extmode) использует заданный режим extmode расширения дискретного вейвлета преобразовывает (DWT). Для получения дополнительной информации смотрите dwtmode. Этот синтаксис может использоваться с любым из предыдущих синтаксисов.

Примеры

свернуть все

В этом примере показано, как возвратить разложение вейвлета мультисигнала с помощью имени вейвлета и фильтров вейвлета.

Загрузите 1D мультисигнал.

load thinker

Выполните разложение на уровне 2 с помощью db2 вейвлет.

dec = mdwtdec('r',X,2,'db2')
dec = struct with fields:
        dirDec: 'r'
         level: 2
         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [192 96]
            ca: [192x26 double]
            cd: {[192x49 double]  [192x26 double]}

Вычислите фильтры, сопоставленные с db2 вейвлет.

[LoD,HiD,LoR,HiR] = wfilters('db2');

Выполните разложение на уровне 2 с помощью фильтров.

decBIS = mdwtdec('r',X,2,LoD,HiD,LoR,HiR)
decBIS = struct with fields:
        dirDec: 'r'
         level: 2
         wname: ''
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [192 96]
            ca: [192x26 double]
            cd: {[192x49 double]  [192x26 double]}

Подтвердите приближение и детализируйте коэффициенты обоих разложений, идентичны.

max(abs(dec.ca(:)-decBIS.ca(:)))
ans = 0
max(abs(dec.cd{1}(:)-decBIS.cd{1}(:)))
ans = 0
max(abs(dec.cd{2}(:)-decBIS.cd{2}(:)))
ans = 0

Входные параметры

свернуть все

Индикатор Direction разложения вейвлета, заданного как:

  • 'r': Возьмите 1D разложение вейвлета каждой строки x

  • 'c': Возьмите 1D разложение вейвлета каждого столбца x

Входные данные, заданные как матрица с действительным знаком.

Уровень разложения, заданного как положительное целое число. mdwtdec не осуществляет ограничение максимального уровня. Используйте wmaxlev гарантировать, что коэффициенты вейвлета свободны от граничных эффектов. Если граничные эффекты не являются беспокойством, хорошее правило состоит в том, чтобы установить lev меньше чем или равный fix(log2(length(N))), где N является количеством выборок в 1D данных.

Анализ вейвлета, заданного как вектор символов или скаляр строки. Вейвлет должен быть ортогональным или биоортогональным. Ортогональные и биоортогональные вейвлеты определяются как тип 1 и вейвлеты типа 2 соответственно в менеджере по вейвлету, wavemngr.

  • Допустимые встроенные ортогональные семейства вейвлетов начинают с 'haar', 'dbN', 'fkN', 'coifN', или 'symN', где N является номером исчезающих моментов для всех семейств кроме fk. Для fk, N является количеством коэффициентов фильтра.

  • Допустимые биоортогональные семейства вейвлетов начинают с 'biorNr.Nd' или 'rbioNd.Nr', где Nr и Nd являются номером исчезающих моментов в реконструкции (синтез) и разложение (анализ) вейвлет.

Определите допустимые значения в течение исчезающих моментов при помощи waveinfo с кратким названием семейства вейвлетов. Например, введите waveinfo('db') или waveinfo('bior'). Используйте wavemngr('type',WNAME) определить, является ли вейвлет ортогональным (возвращается 1), или биоортогональный (возвращается 2).

Фильтры разложения вейвлета, заданные как пара ровной длины векторы с действительным знаком. LoD фильтр разложения lowpass и HiD highpass фильтр разложения. Длины LoD и HiD должно быть равным. Смотрите wfilters для получения дополнительной информации.

Фильтры реконструкции вейвлета, заданные как пара ровной длины векторы с действительным знаком. LoR фильтр реконструкции lowpass и HiR highpass фильтр реконструкции. Длины LoR и HiR должно быть равным. Смотрите wfilters для получения дополнительной информации.

Дополнительный режим, используемый при выполнении разложения вейвлета, заданного как:

mode

Режим расширения DWT

'zpd'

Дополнение нулями

'sp0'

Сглаживайте расширение порядка 0

'spd' (or 'sp1')

Сглаживайте расширение порядка 1

'sym' или 'symh'

Симметричное расширение (половина точки): граничное значение симметричная репликация

'symw'

Симметричное расширение (самое главное): граничное значение симметричная репликация

'asym' или 'asymh'

Антисимметричное расширение (половина точки): граничное значение антисимметричная репликация

'asymw'

Антисимметричное расширение (самое главное): граничное значение антисимметричная репликация

'ppd', 'per'

Расширение Periodized

Если длина сигнала нечетна и mode 'per', дополнительная выборка, равная последнему значению, добавляется направо, и расширение выполняется в 'ppd' режим. Если длина сигнала даже, 'per' эквивалентно 'ppd'. Это правило также применяется к изображениям.

Глобальная переменная, управляемая dwtmode задает режим расширения по умолчанию. Используйте dwtmode определить дополнительные режимы.

Выходные аргументы

свернуть все

Разложение вейвлета x мультисигнала, возвращенный как структура со следующими полями:

  • dirDec — Индикатор Direction: 'r' (строка) или 'c' (столбец)

  • level — Уровень разложения вейвлета

  • wname — Имя вейвлета

  • dwtFilters — Структура с четырьмя полями: LoD, HiD, LoR, и HiR

  • dwtEXTM — Режим расширения DWT

  • dwtShift — DWT переключают параметр (0 или 1)

  • dataSize — Размер x

  • ca — Коэффициенты приближения на уровне lev

  • cd — Массив ячеек коэффициентов детали, от уровня 1 до уровня lev

Коэффициенты ca и cd{k}, для k от 1 до lev, матрицы и хранятся в строках если dirdec = 'r' или в столбцах, если dirdec = 'c'.

Ссылки

[1] Daubechies, я. Десять лекций по вейвлетам. CBMS-NSF региональный ряд конференции в прикладной математике. Филадельфия, PA: общество промышленной и прикладной математики, 1992.

[2] Mallat, S. G. “Теория для Разложения Сигнала Мультиразрешения: Представление Вейвлета”. Транзакции IEEE согласно Анализу Шаблона и Искусственному интеллекту. Издание 11, Выпуск 7, июль 1989, стр 674–693.

[3] Мейер, Y. Вейвлеты и операторы. Переведенный Д. Х. Сэлинджером. Кембридж, Великобритания: Издательство Кембриджского университета, 1995.

Расширенные возможности

Смотрите также

|

Представленный в R2007a