Преобразование расстояния двухуровневого изображения
вычисляет Евклидово преобразование расстояния двухуровневого изображения D = bwdist(BW)BW. Для каждого пикселя в BW, преобразование расстояния присваивает номер, который является расстоянием между тем пикселем и самым близким ненулевым пикселем BW.
Опционально можно вычислить Евклидово преобразование расстояния 2D двухуровневого изображения
[ также вычисляет самую близкую пиксельную карту в форме массива индекса, D,idx] = bwdist(BW)idx. Каждый элемент idx содержит линейный индекс самого близкого ненулевого пикселя BW. Самая близкая пиксельная карта также называется картой функции, функция преобразовывают, или преобразование ближайшего соседа.
bwdist алгоритмы FAST использования, чтобы вычислить истинное Евклидово преобразование расстояния, особенно в 2D случае. Другие методы предоставлены, в основном, по педагогическим причинам. Однако альтернативные преобразования расстояния иногда значительно быстрее для многомерных входных изображений, особенно те, которые имеют много ненулевых элементов.
Функциональный bwdist измененный в версии 6.4 (R2009b). Предыдущие версии Image Processing Toolbox использовали различные алгоритмы в вычислении Евклидова преобразования расстояния и связанной матрицы метки. Если вам нужны те же результаты, приведенные предыдущей реализацией, используйте функциональный bwdist_old.
Для Евклидовых преобразований расстояния, bwdist использует алгоритм FAST. [1]
Для cityblock, шахматной доски, и квазиевклидовых преобразований расстояния, bwdist использует 2D передачу, последовательный алгоритм сканирования. [2]
Различные меры по расстоянию достигаются при помощи различных наборов весов на сканированиях, как описано в [3].
[1] Маурер, Келвин, Жэньшэн Ци и Виджай Рэгэвэн, "Линейный Алгоритм Времени для Вычислительных Точных Евклидовых Преобразований расстояния Двухуровневых изображений в Произвольных Размерностях", Транзакции IEEE согласно Анализу Шаблона и Искусственному интеллекту, Изданию 25, № 2, февраль 2003, стр 265-270.
[2] Розенфельд, Азрил и Джон Пфэлц, "Последовательные операции в обработке цифрового изображения", Журнал Ассоциации вычислительной техники, Издания 13, № 4, 1966, стр 471-494.
[3] Paglieroni, Дэвид, "Преобразования расстояния: Свойства и Приложения Машинного зрения", Компьютерное зрение, Графика и Обработка изображений: Графические Модели и Обработка изображений, Издание 54, № 1, январь 1992, стр 57-58.