Моделирование и анализ антенной решетки

В этом примере показано, как создать, визуализируйте и анализируйте антенную решетку от Antenna Toolbox.

Создайте антенную решетку Используя антенные элементы

Создайте прямоугольную антенную решетку по умолчанию с помощью rectangularArray элемент в библиотеке массивов. По умолчанию массив использует диполь в качестве антенного элемента.

ra = rectangularArray
ra = 
  rectangularArray with properties:

           Element: [1x1 dipole]
              Size: [2 2]
        RowSpacing: 2
     ColumnSpacing: 2
           Lattice: 'Rectangular'
    AmplitudeTaper: 1
        PhaseShift: 0
              Tilt: 0
          TiltAxis: [1 0 0]

Визуализируйте размещение массива

Используйте layout функционируйте, чтобы построить положение элементов массива в x-y плоскости. По умолчанию прямоугольный массив является дипольным массивом с 4 элементами в 2x2 прямоугольная решетка.

layout(ra)

Визуализируйте геометрию массива

Используйте show функционируйте, чтобы просмотреть структуру прямоугольной антенной решетки.

show(ra)

Постройте диаграмму направленности массива

Используйте pattern функционируйте, чтобы построить диаграмму направленности прямоугольного массива. Диаграмма направленности является пространственным распределением степени массива. Шаблон отображает направленность или усиление массива. По умолчанию, графики функций шаблона направленность массива.

pattern(ra,70e6)

Постройте шаблон азимута и вертикального изменения массива

Используйте patternAzimuth и patternElevation функции, чтобы построить азимут и шаблон вертикального изменения прямоугольного массива. Эти два шаблона являются 2D диаграммой направленности массива на заданной частоте.

patternAzimuth(ra,70e6)

figure
patternElevation(ra,70e6)

Вычислите направленность массива

Направленность является способностью массива излучить степень в конкретном направлении. Это может быть задано как отношение максимальной интенсивности излучения в желаемом направлении к средней интенсивности излучения во всех других направлениях. Используйте pattern функция, чтобы вычислить направленность прямоугольного массива.

[Directivity] = pattern(ra,70e6,0,90)
Directivity = -40.1001

Вычислите поля EH массива

Используйте EHfields функция, чтобы вычислить поля EH прямоугольного массива. Поля EH являются x, y, и z компонентами электрических и магнитных полей массива. Эти компоненты измеряются на определенной частоте и в заданных точках на пробеле.

[E,H] = EHfields(ra,70e6,[0;0;1])
E = 3×1 complex

  -0.0000 - 0.0000i
  -0.0002 + 0.0002i
  -1.3304 - 0.0758i

H = 3×1 complex
10-5 ×

  -0.1274 - 0.1541i
  -0.0000 - 0.0000i
   0.0000 + 0.0000i

Постройте различную поляризацию массива

Используйте пару "имя-значение" Поляризации в функции шаблона, чтобы построить различные шаблоны поляризации прямоугольного массива. Поляризация является ориентацией электрического поля или электронным полем, массива. Поляризация классифицируется как эллиптическая, линейная, или круговая. Этот пример показывает диаграмму направленности левой руки, циркулярной поляризованной (LHCP) прямоугольного массива.

pattern(ra,70e6,'Polarization','LHCP')

Вычислите ширину луча массива

Используйте beamwidth функция, чтобы вычислить ширину луча прямоугольного массива. Ширина луча массива является угловой мерой покрытия шаблона массивов. Угол ширины луча измеряется в плоскости, которая содержит направление основного лепестка массива.

[bw,angles] = beamwidth(ra,70e6,0,1:1:360)
bw = 2×1

   44.0000
   44.0000

angles = 2×2

   208   252
   288   332

Вычислите импеданс скана массива

Используйте impedance функция, чтобы вычислить и построить входной импеданс прямоугольного массива. Активный импеданс или импеданс скана, является входным импедансом каждого антенного элемента в массиве, когда все элементы взволнованы.

impedance(ra,60e6:1e6:70e6)

Можно также просмотреть импеданс всех четырех элементов путем изменения числа элементов на графике от 1 до 1:4. Смотрите фигуру.

Вычислите отражательный коэффициент массива

Используйте sparameters функция, чтобы вычислить значение S11 прямоугольного массива. Значение S11 дает отражательный коэффициент массива.

S = sparameters(ra,60e6:1e6:70e6,72)
S = 
  sparameters: S-parameters object

       NumPorts: 4
    Frequencies: [11x1 double]
     Parameters: [4x4x11 double]
      Impedance: 72

  rfparam(obj,i,j) returns S-parameter Sij

rfplot(S)

Вычислите возвращают потерю массива

Используйте returnLoss функция, чтобы вычислить и построить потерю возврата прямоугольного массива.

returnLoss(ra,60e6:1e6:70e6,72)

Можно также просмотреть потерю возврата всех четырех элементов путем изменения числа элементов на графике от 1 до 1:4. Смотрите фигуру.

Вычислите заряд и распределение тока массива

Используйте charge и current функции, чтобы вычислить заряд и распределение тока на прямоугольной поверхности массивов.

charge(ra,70e6)

figure
current(ra,70e6)

Вычислите коэффициент корреляции массива

Используйте correlation вычислить коэффициент корреляции прямоугольного массива. Коэффициент корреляции является отношением между входящими сигналами в портах антенны в массиве.

correlation(ra,60e6:1e6:70e6,1,2)

Измените размер массива и визуализируйте размещение

Используйте свойство 'Size' прямоугольного массива изменить его в дипольный массив с 16 элементами.

ra.Size = [4 4];
show(ra)

Измените интервал элементов массива в неоднородный

Используйте свойства 'RowSpacing' и 'ColumnSpacing' прямоугольного массива изменить интервал между антенными элементами.

ra.RowSpacing = [ 1.1 2 1.2];
ra.ColumnSpacing =[0.5 1.4 2]
ra = 
  rectangularArray with properties:

           Element: [1x1 dipole]
              Size: [4 4]
        RowSpacing: [1.1000 2 1.2000]
     ColumnSpacing: [0.5000 1.4000 2]
           Lattice: 'Rectangular'
    AmplitudeTaper: 1
        PhaseShift: 0
              Tilt: 0
          TiltAxis: [1 0 0]

show(ra)

Ссылки

[1] Balanis, C.A. "Теория антенны. Анализ и проектирование", p. 514, Вайли, Нью-Йорк, 3-й Выпуск, 2005.

Для просмотра документации необходимо авторизоваться на сайте