findCubicLaneBoundaries

Найдите контуры с помощью кубической модели

Описание

пример

boundaries = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth) использует согласие случайной выборки (RANSAC) алгоритм, чтобы найти кубические модели контура маршрута, которые соответствуют набору граничных точек и аппроксимированной ширины. Каждая модель в возвращенном массиве cubicLaneBoundary объекты содержат [A B C D] коэффициенты его полиномиального уравнения третьей степени и сила граничной оценки.

[boundaries,boundaryPoints] = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth) также возвращает массив ячеек inlier граничных точек для каждой граничной найденной модели, с помощью предыдущих входных параметров.

[___] = findCubicLaneBoundaries(___,Name,Value) опции использования заданы одним или несколькими Name,Value парные аргументы, с любым из предыдущих синтаксисов.

Примеры

свернуть все

Найдите маршруты в изображении при помощи кубических моделей контура маршрута. Наложите идентифицированные маршруты на оригинальном изображении и на преобразовании вида с высоты птичьего полета изображения.

Загрузите изображение дороги с маршрутами. Изображение было получено из датчика камеры, смонтированного на передней стороне транспортного средства.

I = imread('road.png');

Преобразуйте изображение в изображение вида с высоты птичьего полета при помощи предварительно сконфигурированного объекта датчика. Это объектные модели датчик, который получил оригинальное изображение.

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)

Установите аппроксимированную ширину маркера маршрута в мировых единицах измерения (метры).

approxBoundaryWidth = 0.25;

Обнаружьте функции маршрута и отобразите их как черно-белое изображение.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
    bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)

Получите кандидата маршрута точки в мировых координатах.

[imageX,imageY]  = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Найдите контуры маршрута в изображении при помощи findCubicLaneBoundaries функция. По умолчанию функция возвращает максимум двух контуров маршрута. Контуры хранятся в массиве cubicLaneBoundary объекты.

boundaries = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);

Используйте insertLaneBoundary накладывать маршруты на оригинальном изображении. XPoints вектор представляет точки маршрута в метрах, которые являются в области значений датчика автомобиля, оборудованного датчиком. Задайте маршруты в различных цветах. По умолчанию маршруты являются желтыми.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

Просмотрите маршруты в изображении вида с высоты птичьего полета.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)

Входные параметры

свернуть все

Граничные точки кандидата в виде [x y] вектор в координатах транспортного средства. Получить координаты транспортного средства для точек в birdsEyeView отобразите, используйте imageToVehicle функционируйте, чтобы преобразовать координаты вида с высоты птичьего полета изображений, чтобы транспортировать координаты.

Аппроксимируйте граничную ширину в виде действительного скаляра в мировых единицах измерения. Шириной является горизонтальный y - измерение оси.

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: 'MaxSamplingAttempts',200

Максимальное количество контуров маршрута, которые функция пытается найти в виде разделенной запятой пары, состоящей из 'MaxNumBoundaries' и положительное целое число.

Функция, чтобы подтвердить граничную модель в виде разделенной запятой пары, состоящей из 'ValidateBoundaryFcn' и указатель на функцию. Заданная функция возвращает логический 1 (TRUE), если граничная модель принята и логический 0 (FALSE) в противном случае. Используйте эту функцию, чтобы отклонить недопустимые контуры. Функция должна иметь форму:

isValid = validateBoundaryFcn(parameters)

parameters вектор, соответствующий трем параболическим параметрам.

Функция валидации по умолчанию всегда возвращает 1 TRUE.

Максимальное количество попыток найти выборку точек, которая дает к допустимому кубическому контуру в виде разделенной запятой пары, состоящей из 'MaxSamplingAttempts' и указатель на функцию. findCubicLaneBoundaries использует fitPolynomialRANSAC (Computer Vision Toolbox) функция к выборке от набора граничных точек и подгонки кубическая граница.

Выходные аргументы

свернуть все

Модели контура маршрута, возвращенные как массив cubicLaneBoundary объекты. Объекты контура маршрута содержат следующие свойства:

  • Parameters — Четырехэлементный вектор, [A B C D], это соответствует четырем коэффициентам полиномиального уравнения третьей степени в общей форме: y = A x 3 + B x 2 + C x + D.

  • BoundaryTypeLaneBoundaryType из поддерживаемых контуров маршрута. Поддерживаемые типы контура маршрута:

    • Unmarked

    • Solid

    • Dashed

    • BottsDots

    • DoubleSolid

    Задайте тип контура маршрута как LaneBoundaryType. BoundaryType. Например:

    LaneBoundaryType.BottsDots
    
  • Strength — Отношение количества уникального x - местоположения оси на контуре к общему количеству точек вдоль линии, на основе XExtent свойство.

  • XExtent — Двухэлементный вектор, описывающий минимальный и максимальный x - местоположения оси для граничных точек.

Граничные точки Inlier, возвращенные как массив ячеек [x y] значения. Каждый элемент массива ячеек соответствует тому же элементу в массиве cubicLaneBoundary объекты.

Советы

  • Чтобы подбирать одну граничную модель к двойному маркеру маршрута, установите approxBoundaryWidth аргумент, чтобы быть достаточно большим, чтобы включать ширину, охватывающую оба маркера маршрута.

Алгоритмы

  • Эта функция использование fitPolynomialRANSAC (Computer Vision Toolbox), чтобы найти кубические модели. Поскольку этот алгоритм использует случайную выборку, выход может варьироваться между запусками.

  • maxDistance параметр fitPolynomialRANSAC (Computer Vision Toolbox) установлен в половину ширины, заданной в approxBoundaryWidth аргумент. Вопросы рассматриваются inliers, если они в граничной ширине. Функция получает итоговую граничную модель с помощью метода наименьших квадратов на точках inlier.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Смотрите также

| | | | | (Computer Vision Toolbox)

Введенный в R2018a
Для просмотра документации необходимо авторизоваться на сайте