solve

Решите проблема уравнения или задача оптимизации

Описание

Использование solve найти решение проблемы уравнения или задачи оптимизации.

пример

sol = solve(prob) решает задачу оптимизации или проблему уравнения prob.

пример

sol = solve(prob,x0) решает prob запуск с точки x0.

пример

sol = solve(___,Name,Value) изменяет процесс решения с помощью одного или нескольких аргументов пары "имя-значение" в дополнение к входным параметрам в предыдущих синтаксисах.

[sol,fval] = solve(___) также возвращает значение целевой функции в решении с помощью любого из входных параметров в предыдущих синтаксисах.

пример

[sol,fval,exitflag,output,lambda] = solve(___) также возвращает выходной флаг, описывающий выходное условие, output структура, содержащая дополнительную информацию о процессе решения, и, для задач оптимизации нецелого числа, структуры множителя Лагранжа.

Примеры

свернуть все

Решите задачу линейного программирования, заданную задачей оптимизации.

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;
prob.Objective = -x - y/3;
prob.Constraints.cons1 = x + y <= 2;
prob.Constraints.cons2 = x + y/4 <= 1;
prob.Constraints.cons3 = x - y <= 2;
prob.Constraints.cons4 = x/4 + y >= -1;
prob.Constraints.cons5 = x + y >= 1;
prob.Constraints.cons6 = -x + y <= 2;

sol = solve(prob)
Solving problem using linprog.

Optimal solution found.
sol = struct with fields:
    x: 0.6667
    y: 1.3333

Найдите минимум peaks функция, которая включена в MATLAB® в области x2+y24. Для этого создайте переменные x оптимизации и y.

x = optimvar('x');
y = optimvar('y');

Создайте задачу оптимизации, имеющую peaks как целевая функция.

prob = optimproblem("Objective",peaks(x,y));

Включайте ограничение как неравенство в переменных оптимизации.

prob.Constraints = x^2 + y^2 <= 4;

Установите начальную точку для x к 1 и y к –1, и решают задачу.

x0.x = 1;
x0.y = -1;
sol = solve(prob,x0)
Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.
sol = struct with fields:
    x: 0.2283
    y: -1.6255

Неподдерживаемые функции требуют fcn2optimexpr

Если ваши объективные или нелинейные ограничительные функции не полностью состоят из элементарных функций, необходимо преобразовать функции в выражения оптимизации с помощью fcn2optimexpr. Смотрите преобразуют нелинейную функцию в выражение оптимизации и поддерживаемые операции на переменных и выражениях оптимизации.

Преобразовывать существующий пример:

convpeaks = fcn2optimexpr(@peaks,x,y);
prob.Objective = convpeaks;
sol2 = solve(prob,x0)
Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.
sol2 = struct with fields:
    x: 0.2283
    y: -1.6255

Copyright 2018–2020 The MathWorks, Inc.

Сравните количество шагов, чтобы решить задачу целочисленного программирования и с и без начальной допустимой точки. Проблема имеет восемь целочисленных переменных и четыре линейных ограничения равенства, и все переменные ограничиваются, чтобы быть положительными.

prob = optimproblem;
x = optimvar('x',8,1,'LowerBound',0,'Type','integer');

Создайте четыре линейных ограничения равенства и включайте их в проблему.

Aeq = [22    13    26    33    21     3    14    26
    39    16    22    28    26    30    23    24
    18    14    29    27    30    38    26    26
    41    26    28    36    18    38    16    26];
beq = [ 7872
       10466
       11322
       12058];
cons = Aeq*x == beq;
prob.Constraints.cons = cons;

Создайте целевую функцию и включайте ее в проблему.

f = [2    10    13    17     7     5     7     3];
prob.Objective = f*x;

Решите задачу, не используя начальную точку и исследуйте отображение, чтобы видеть количество узлов метода ветвей и границ.

[x1,fval1,exitflag1,output1] = solve(prob);
Solving problem using intlinprog.
LP:                Optimal objective value is 1554.047531.                                          

Cut Generation:    Applied 8 strong CG cuts.                                                        
                   Lower bound is 1591.000000.                                                      

Branch and Bound:

   nodes     total   num int        integer       relative                                          
explored  time (s)  solution           fval        gap (%)                                         
   10000      0.74         0              -              -                                          
   18027      1.31         1   2.906000e+03   4.509804e+01                                          
   21859      1.73         2   2.073000e+03   2.270974e+01                                          
   23546      1.87         3   1.854000e+03   1.180593e+01                                          
   24121      1.92         3   1.854000e+03   1.563342e+00                                          
   24294      1.94         3   1.854000e+03   0.000000e+00                                          

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon
variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the
default value).

Для сравнения найдите решение с помощью начальной допустимой точки.

x0.x = [8 62 23 103 53 84 46 34]';
[x2,fval2,exitflag2,output2] = solve(prob,x0);
Solving problem using intlinprog.
LP:                Optimal objective value is 1554.047531.                                          

Cut Generation:    Applied 8 strong CG cuts.                                                        
                   Lower bound is 1591.000000.                                                      
                   Relative gap is 59.20%.                                                         

Branch and Bound:

   nodes     total   num int        integer       relative                                          
explored  time (s)  solution           fval        gap (%)                                         
    3627      0.32         2   2.154000e+03   2.593968e+01                                          
    5844      0.51         3   1.854000e+03   1.180593e+01                                          
    6204      0.55         3   1.854000e+03   1.455526e+00                                          
    6400      0.56         3   1.854000e+03   0.000000e+00                                          

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon
variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the
default value).
fprintf('Without an initial point, solve took %d steps.\nWith an initial point, solve took %d steps.',output1.numnodes,output2.numnodes)
Without an initial point, solve took 24294 steps.
With an initial point, solve took 6400 steps.

Предоставление начальной точки не всегда улучшает проблему. Для этой проблемы, с помощью начальной точки экономит время и вычислительные шаги. Однако для некоторых проблем, начальная точка может вызвать solve сделать больше шагов.

Решите задачу

minx(-3x1-2x2-x3)subjectto{x3binaryx1,x20x1+x2+x374x1+2x2+x3=12

не показывая итеративное отображение.

x = optimvar('x',2,1,'LowerBound',0);
x3 = optimvar('x3','Type','integer','LowerBound',0,'UpperBound',1);
prob = optimproblem;
prob.Objective = -3*x(1) - 2*x(2) - x3;
prob.Constraints.cons1 = x(1) + x(2) + x3 <= 7;
prob.Constraints.cons2 = 4*x(1) + 2*x(2) + x3 == 12;

options = optimoptions('intlinprog','Display','off');

sol = solve(prob,'Options',options)
sol = struct with fields:
     x: [2x1 double]
    x3: 1

Исследуйте решение.

sol.x
ans = 2×1

         0
    5.5000

sol.x3
ans = 1

Обеспечьте solve использовать intlinprog как решатель для задачи линейного программирования.

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;
prob.Objective = -x - y/3;
prob.Constraints.cons1 = x + y <= 2;
prob.Constraints.cons2 = x + y/4 <= 1;
prob.Constraints.cons3 = x - y <= 2;
prob.Constraints.cons4 = x/4 + y >= -1;
prob.Constraints.cons5 = x + y >= 1;
prob.Constraints.cons6 = -x + y <= 2;

sol = solve(prob,'Solver', 'intlinprog')
Solving problem using intlinprog.
LP:                Optimal objective value is -1.111111.                                            


Optimal solution found.

No integer variables specified. Intlinprog solved the linear problem.
sol = struct with fields:
    x: 0.6667
    y: 1.3333

Решите смешано-целочисленную задачу линейного программирования, описанную в, Решают задачу Целочисленного программирования с Опциями Не по умолчанию и исследуют все выходные данные.

x = optimvar('x',2,1,'LowerBound',0);
x3 = optimvar('x3','Type','integer','LowerBound',0,'UpperBound',1);
prob = optimproblem;
prob.Objective = -3*x(1) - 2*x(2) - x3;
prob.Constraints.cons1 = x(1) + x(2) + x3 <= 7;
prob.Constraints.cons2 = 4*x(1) + 2*x(2) + x3 == 12;

[sol,fval,exitflag,output] = solve(prob)
Solving problem using intlinprog.
LP:                Optimal objective value is -12.000000.                                           


Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).
sol = struct with fields:
     x: [2x1 double]
    x3: 1

fval = -12
exitflag = 
    OptimalSolution

output = struct with fields:
        relativegap: 0
        absolutegap: 0
      numfeaspoints: 1
           numnodes: 0
    constrviolation: 0
            message: 'Optimal solution found....'
             solver: 'intlinprog'

Для проблемы без любых целочисленных ограничений можно также получить непустую структуру множителя Лагранжа как пятый выход.

Создайте и решите задачу оптимизации с помощью названный индексными переменными. Проблема состоит в том, чтобы максимизировать взвешенный прибылью поток фруктов в различные аэропорты согласно ограничениям на взвешенные потоки.

rng(0) % For reproducibility
p = optimproblem('ObjectiveSense', 'maximize');
flow = optimvar('flow', ...
    {'apples', 'oranges', 'bananas', 'berries'}, {'NYC', 'BOS', 'LAX'}, ...
    'LowerBound',0,'Type','integer');
p.Objective = sum(sum(rand(4,3).*flow));
p.Constraints.NYC = rand(1,4)*flow(:,'NYC') <= 10;
p.Constraints.BOS = rand(1,4)*flow(:,'BOS') <= 12;
p.Constraints.LAX = rand(1,4)*flow(:,'LAX') <= 35;
sol = solve(p);
Solving problem using intlinprog.
LP:                Optimal objective value is -1027.472366.                                         

Heuristics:        Found 1 solution using ZI round.                                                 
                   Upper bound is -1027.233133.                                                     
                   Relative gap is 0.00%.                                                          


Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

Найдите оптимальный поток апельсинов и ягод в Нью-Йорк и Лос-Анджелес.

[idxFruit,idxAirports] = findindex(flow, {'oranges','berries'}, {'NYC', 'LAX'})
idxFruit = 1×2

     2     4

idxAirports = 1×2

     1     3

orangeBerries = sol.flow(idxFruit, idxAirports)
orangeBerries = 2×2

         0  980.0000
   70.0000         0

Это отображение означает, что никакие апельсины не идут в NYC, 70 ягод идут в NYC, 980 апельсинов идут в LAX, и никакие ягоды не идут в LAX.

Перечислите оптимальный поток следующего:

Fruit Airports

----- --------

Berries NYC

Apples BOS

Oranges LAX

idx = findindex(flow, {'berries', 'apples', 'oranges'}, {'NYC', 'BOS', 'LAX'})
idx = 1×3

     4     5    10

optimalFlow = sol.flow(idx)
optimalFlow = 1×3

   70.0000   28.0000  980.0000

Это отображение означает, что 70 ягод идут в NYC, 28 яблок идут в BOS, и 980 апельсинов идут в LAX.

Решить нелинейную систему уравнений

exp(-exp(-(x1+x2)))=x2(1+x12)x1cos(x2)+x2sin(x1)=12

с помощью подхода, основанного на проблеме сначала задайте x как двухэлементная переменная оптимизации.

x = optimvar('x',2);

Создайте первое уравнение как выражение равенства оптимизации.

eq1 = exp(-exp(-(x(1) + x(2)))) == x(2)*(1 + x(1)^2);

Точно так же создайте второе уравнение как выражение равенства оптимизации.

eq2 = x(1)*cos(x(2)) + x(2)*sin(x(1)) == 1/2;

Создайте проблему уравнения и поместите уравнения в проблему.

prob = eqnproblem;
prob.Equations.eq1 = eq1;
prob.Equations.eq2 = eq2;

Рассмотрите проблему.

show(prob)
  EquationProblem : 

	Solve for:
       x


 eq1:
       exp(-exp(-(x(1) + x(2)))) == (x(2) .* (1 + x(1).^2))

 eq2:
       ((x(1) .* cos(x(2))) + (x(2) .* sin(x(1)))) == 0.5

Решите задачу, начинающую с точки [0,0]. Для подхода, основанного на проблеме задайте начальную точку как структуру с именами переменных как поля структуры. Для этой проблемы существует только одна переменная, x.

x0.x = [0 0];
[sol,fval,exitflag] = solve(prob,x0)
Solving problem using fsolve.

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
sol = struct with fields:
    x: [2x1 double]

fval = struct with fields:
    eq1: -2.4069e-07
    eq2: -3.8255e-08

exitflag = 
    EquationSolved

Просмотрите точку решения.

disp(sol.x)
    0.3532
    0.6061

Неподдерживаемые функции требуют fcn2optimexpr

Если ваши функции уравнения не состоят из элементарных функций, необходимо преобразовать функции в выражения оптимизации с помощью fcn2optimexpr. Для существующего примера:

ls1 = fcn2optimexpr(@(x)exp(-exp(-(x(1)+x(2)))),x);
eq1 = ls1 == x(2)*(1 + x(1)^2);
ls2 = fcn2optimexpr(@(x)x(1)*cos(x(2))+x(2)*sin(x(1)),x);
eq2 = ls2 == 1/2;

Смотрите поддерживаемые операции на переменных и выражениях оптимизации и преобразуйте нелинейную функцию в выражение оптимизации.

Входные параметры

свернуть все

Задача оптимизации или проблема уравнения в виде OptimizationProblem возразите или EquationProblem объект. Создайте задачу оптимизации при помощи optimproblem; создайте проблему уравнения при помощи eqnproblem.

Предупреждение

Основанный на проблеме подход не поддерживает комплексные числа в целевой функции, нелинейных равенствах и нелинейных неравенствах. Если при вычислении функции встретится комплексное число, даже как промежуточное значение, конечный результат может оказаться неправильным.

Пример: prob = optimproblem; prob.Objective = obj; prob.Constraints.cons1 = cons1;

Пример: prob = eqnproblem; prob.Equations = eqs;

Начальная точка в виде структуры с именами полей равняется именам переменных в prob.

Для примера с помощью x0 с именованными индексными переменными смотрите, Создают Начальную Точку для Оптимизации с Именованными Индексными переменными.

Пример: если prob имеет переменные под названием x и y: x0.x = [3,2,17]; x0.y = [pi/3,2*pi/3].

Типы данных: struct

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: solve(prob,'options',opts)

Опции оптимизации в виде разделенной запятой пары, состоящей из 'options' и объект, созданный optimoptions или структура опций такой, как создано optimset.

Внутренне, solve вызовы функции соответствующий решатель, как детализировано в 'solver' ссылка аргумента. Убедитесь, что options совместимо с решателем. Например, intlinprog не позволяет опциям быть структурой и lsqnonneg не позволяет опциям быть объектом.

Для предложений на настройках опций, чтобы улучшить intlinprog решение или скорость решения, смотрите Настраивающееся Целочисленное Линейное Программирование. Для linprog, 'dual-simplex' по умолчанию алгоритм обычно эффективен памятью и быстр. Иногда, linprog решает большую задачу быстрее когда Algorithm опцией является 'interior-point'. Для предложений на настройках опций, чтобы улучшить решение нелинейной проблемы, см. широко использующиеся Опции: Настройка и Поиск и устранение проблем и Улучшает Результаты.

Пример: options = optimoptions('intlinprog','Display','none')

Решатель оптимизации в виде разделенной запятой пары, состоящей из 'solver' и имя перечисленного решателя. Для задач оптимизации эта таблица содержит доступные решатели для каждого проблемного типа.

Проблемный типРешатель по умолчаниюДругие позволенные решатели
Линейные объективные, линейные ограниченияlinprogintlinprog, quadprog, fmincon, fminunc (fminunc не рекомендуется, потому что неограниченные линейные программы или постоянные или неограниченными),
Линейные объективные, линейные и целочисленные ограниченияintlinproglinprog (целочисленные проигнорированные ограничения)
Квадратичные объективные, линейные ограниченияquadprogfmincon, fminunc (без ограничений)
Минимизируйте || C*x - d ||^2 удовлетворяющий линейным ограничениямlsqlin когда цель является константой плюс сумма квадратов линейных выраженийquadprog, lsqnonneg (Ограничения кроме x> = 0 проигнорированы для lsqnonneg), fmincon, fminunc (без ограничений)
Минимизируйте || C*x - d ||^2 удовлетворяющий x> = 0lsqlinquadprog, lsqnonneg
Минимизируйте sum(e(i).^2), где e(i) выражение оптимизации согласно связанным ограничениямlsqnonlin когда цели дали форму в Запишите целевую функцию для основанных на проблеме наименьших квадратовlsqcurvefit, fmincon, fminunc (без ограничений)
Минимизируйте общий нелинейный функциональный f (x)fminuncfmincon
Минимизируйте общий нелинейный функциональный f (x), удовлетворяющий некоторым ограничениям, или минимизируйте любой функциональный предмет к нелинейным ограничениямfmincon'none'

Примечание

Если вы выбираете lsqcurvefit как решатель для задачи наименьших квадратов, solve использование lsqnonlin. lsqcurvefit и lsqnonlin решатели идентичны для solve.

Внимание

Для проблем максимизации (prob.ObjectiveSense "max" или "maximize"), не задавайте решатель наименьших квадратов (один с именем, начинающим lsq). Если вы делаете, solve выдает ошибку, потому что эти решатели не могут максимизировать.

Для решения уравнения эта таблица содержит доступные решатели для каждого проблемного типа. В таблице,

  • * указывает на решатель по умолчанию для проблемного типа.

  • Y указывает на доступный решатель.

  • N указывает на недоступный решатель.

Поддерживаемые решатели для уравнений

Тип уравненияlsqlinlsqnonnegfzerofsolvelsqnonlin
Линейный*NY (только скаляр)YY
Линейный плюс границы*YNNY
Нелинейный скалярNN*YY
Нелинейная системаNNN*Y
Нелинейная система плюс границыNNNN*

Пример: 'intlinprog'

Типы данных: char | string

Индикация, чтобы использовать автоматическое дифференцирование (AD) для нелинейной целевой функции в виде разделенной запятой пары, состоящей из 'ObjectiveDerivative' и любой 'auto' (используйте AD если возможный), или 'finite-differences' (не используйте AD). 'auto' вызывает базовый решатель (fmincon или fminunc) использовать информацию о градиенте при решении задачи при условии, что целевая функция поддерживается, как описано в Поддерживаемых Операциях на Переменных и выражениях Оптимизации. Для примера смотрите Эффект Автоматического Дифференцирования в Основанной на проблеме Оптимизации.

Предупреждение

'ObjectiveDerivative' и 'ConstraintDerivative' аргументы пары "имя-значение" в настоящее время применяются только к задачам, решенным fmincon или fminunc. При попытке использовать эти аргументы при решении уравнения с solve или преобразование уравнения с prob2struct, MATLAB® выдает ошибку.

Пример: 'finite-differences'

Типы данных: char | string

Индикация, чтобы использовать автоматическое дифференцирование (AD) для нелинейного ограничения функционирует в виде разделенной запятой пары, состоящей из 'ConstraintDerivative' и любой 'auto' (используйте AD если возможный), или 'finite-differences' (не используйте AD). 'auto' вызывает базовый решатель (fmincon) использовать информацию о градиенте при решении задачи при условии, что ограничительные функции поддерживаются, как описано в Поддерживаемых Операциях на Переменных и выражениях Оптимизации. Для примера смотрите Эффект Автоматического Дифференцирования в Основанной на проблеме Оптимизации.

Предупреждение

'ObjectiveDerivative' и 'ConstraintDerivative' аргументы пары "имя-значение" в настоящее время применяются только к задачам, решенным fmincon или fminunc. При попытке использовать эти аргументы при решении уравнения с solve или преобразование уравнения с prob2struct, MATLAB выдает ошибку.

Пример: 'finite-differences'

Типы данных: char | string

Выходные аргументы

свернуть все

Решение, возвращенное как структура. Поля структуры являются именами переменных оптимизации. Смотрите optimvar.

Значение целевой функции в решении, возвращенном как вещественное число, или, для систем уравнений, вектора действительных чисел. Для задач наименьших квадратов, fval сумма квадратов остаточных значений в решении. Для решающих уравнение проблем, fval значение функции в решении, означая левую сторону минус правая сторона уравнений.

Совет

Если вы забыли просить fval для задачи оптимизации можно вычислить его использование:

fval = evaluate(prob.Objective,sol)

Обоснуйте, что остановленный решатель, возвратился как переменная перечисления. Можно преобразовать exitflag к его числовому эквивалентному использованию double(exitflag), и к его строке эквивалентное использование string(exitflag).

Эта таблица описывает выходные флаги для intlinprog решатель.

Выйдите из флага для intlinprogЧисловой эквивалентЗначение
OptimalWithPoorFeasibility3

Решение выполнимо относительно относительного ConstraintTolerance допуск, но не выполнимо относительно абсолютной погрешности.

IntegerFeasible2intlinprog остановленный преждевременно и найденный целочисленной допустимой точкой.
OptimalSolution

1

Решатель сходился к решению x.

SolverLimitExceeded

0

intlinprog превышает один из следующих допусков:

  • LPMaxIterations

  • MaxNodes

  • MaxTime

  • RootLPMaxIterations

Смотрите допуски и критерий остановки. solve также возвращает этот выходной флаг, когда он исчерпывает память в корневом узле.

OutputFcnStop-1intlinprog зашедший выходная функция или функция построения графика.
NoFeasiblePointFound

-2

Никакая допустимая точка не найдена.

Unbounded

-3

Проблема неограниченна.

FeasibilityLost

-9

Решатель потерял выполнимость.

Exitflags 3 и -9 относитесь к решениям, которые имеют большой infeasibilities. Они обычно являются результатом линейных ограничительных матриц, которые имеют большое число обусловленности или проблемы, которые имеют большие компоненты решения. Чтобы откорректировать эти проблемы, попытайтесь масштабировать содействующие матрицы, устранить избыточные линейные ограничения или дать более трудные границы на переменных.

Эта таблица описывает выходные флаги для linprog решатель.

Выйдите из флага для linprogЧисловой эквивалентЗначение
OptimalWithPoorFeasibility3

Решение выполнимо относительно относительного ConstraintTolerance допуск, но не выполнимо относительно абсолютной погрешности.

OptimalSolution1

Решатель сходился к решению x.

SolverLimitExceeded0

Количество итераций превышает options.MaxIterations.

NoFeasiblePointFound-2

Никакая допустимая точка не найдена.

Unbounded-3

Проблема неограниченна.

FoundNaN-4

NaN значение, с которым сталкиваются во время осуществления алгоритма.

PrimalDualInfeasible-5

И основные и двойные проблемы неосуществимы.

DirectionTooSmall-7

Поисковое направление слишком мало. Никакие дальнейшие успехи не могут быть сделаны.

FeasibilityLost-9

Решатель потерял выполнимость.

Exitflags 3 и -9 относитесь к решениям, которые имеют большой infeasibilities. Они обычно являются результатом линейных ограничительных матриц, которые имеют большое число обусловленности или проблемы, которые имеют большие компоненты решения. Чтобы откорректировать эти проблемы, попытайтесь масштабировать содействующие матрицы, устранить избыточные линейные ограничения или дать более трудные границы на переменных.

Эта таблица описывает выходные флаги для lsqlin решатель.

Выйдите из флага для lsqlinЧисловой эквивалентЗначение
FunctionChangeBelowTolerance3

Изменение в невязке меньше, чем заданный допуск options.FunctionTolerance. (trust-region-reflective алгоритм)

StepSizeBelowTolerance

2

Размер шага, меньший, чем options.StepTolerance, ограничениям удовлетворяют. (interior-point алгоритм)

OptimalSolution1

Решатель сходился к решению x.

SolverLimitExceeded0

Количество итераций превышает options.MaxIterations.

NoFeasiblePointFound-2

Для задач оптимизации проблема неосуществима. Или, для interior-point алгоритм, размер шага, меньший, чем options.StepTolerance, но ограничениям не удовлетворяют.

Для проблем уравнения не найдено никакое решение.

IllConditioned-4

Плохо создание условий предотвращает дальнейшую оптимизацию.

NoDescentDirectionFound-8

Поисковое направление слишком мало. Никакие дальнейшие успехи не могут быть сделаны. (interior-point алгоритм)

Эта таблица описывает выходные флаги для quadprog решатель.

Выйдите из флага для quadprogЧисловой эквивалентЗначение
LocalMinimumFound4

Локальный минимум найден; минимум не уникален.

FunctionChangeBelowTolerance3

Изменение в значении целевой функции меньше, чем заданный допуск options.FunctionTolerance. (trust-region-reflective алгоритм)

StepSizeBelowTolerance

2

Размер шага, меньший, чем options.StepTolerance, ограничениям удовлетворяют. (interior-point-convex алгоритм)

OptimalSolution1

Решатель сходился к решению x.

SolverLimitExceeded0

Количество итераций превышает options.MaxIterations.

NoFeasiblePointFound-2

Проблема неосуществима. Или, для interior-point алгоритм, размер шага, меньший, чем options.StepTolerance, но ограничениям не удовлетворяют.

IllConditioned-4

Плохо создание условий предотвращает дальнейшую оптимизацию.

Nonconvex

-6

Невыпуклая проблема обнаруживается. (interior-point-convex алгоритм)

NoDescentDirectionFound-8

Не мог вычислить направление шага. (interior-point-convex алгоритм)

Эта таблица описывает выходные флаги для lsqcurvefit или lsqnonlin решатель.

Выйдите из флага для lsqnonlinЧисловой эквивалентЗначение
SearchDirectionTooSmall 4

Величина поискового направления была меньшей, чем options.StepTolerance.

FunctionChangeBelowTolerance3

Изменение в невязке было меньше options.FunctionTolerance.

StepSizeBelowTolerance

2

Размер шага, меньший, чем options.StepTolerance.

OptimalSolution1

Решатель сходился к решению x.

SolverLimitExceeded0

Количество итераций превысило options.MaxIterations или количество вычислений функции превысило options.MaxFunctionEvaluations.

OutputFcnStop-1

Зашедший выходная функция или функция построения графика.

NoFeasiblePointFound-2

Для задач оптимизации проблема неосуществима: границы lb и ub противоречивы.

Для проблем уравнения не найдено никакое решение.

Эта таблица описывает выходные флаги для fminunc решатель.

Выйдите из флага для fminuncЧисловой эквивалентЗначение
NoDecreaseAlongSearchDirection5

Предсказанное уменьшение в целевой функции меньше options.FunctionTolerance допуск.

FunctionChangeBelowTolerance3

Изменение в значении целевой функции меньше options.FunctionTolerance допуск.

StepSizeBelowTolerance

2

Изменитесь в x меньше, чем options.StepTolerance допуск.

OptimalSolution1

Величина градиента меньше, чем options.OptimalityTolerance допуск.

SolverLimitExceeded0

Количество итераций превышает options.MaxIterations или количество вычислений функции превышает options.MaxFunctionEvaluations.

OutputFcnStop-1

Зашедший выходная функция или функция построения графика.

Unbounded-3

Целевая функция при текущей итерации ниже options.ObjectiveLimit.

Эта таблица описывает выходные флаги для fmincon решатель.

Выйдите из флага для fminconЧисловой эквивалентЗначение
NoDecreaseAlongSearchDirection5

Величина косой производной в поисковом направлении меньше 2*options.OptimalityTolerance и максимальное нарушение ограничений меньше options.ConstraintTolerance.

SearchDirectionTooSmall4

Величина поискового направления меньше 2*options.StepTolerance и максимальное нарушение ограничений меньше options.ConstraintTolerance.

FunctionChangeBelowTolerance3

Изменение в значении целевой функции меньше options.FunctionTolerance и максимальное нарушение ограничений меньше options.ConstraintTolerance.

StepSizeBelowTolerance

2

Изменитесь в x меньше options.StepTolerance и максимальное нарушение ограничений меньше options.ConstraintTolerance.

OptimalSolution1

Мера оптимальности первого порядка меньше options.OptimalityTolerance, и максимальное нарушение ограничений меньше options.ConstraintTolerance.

SolverLimitExceeded0

Количество итераций превышает options.MaxIterations или количество вычислений функции превышает options.MaxFunctionEvaluations.

OutputFcnStop-1

Зашедший выходная функция или функция построения графика.

NoFeasiblePointFound-2

Никакая допустимая точка не найдена.

Unbounded-3

Целевая функция при текущей итерации ниже options.ObjectiveLimit и максимальное нарушение ограничений меньше options.ConstraintTolerance.

Эта таблица описывает выходные флаги для fsolve решатель.

Выйдите из флага для fsolveЧисловой эквивалентЗначение
SearchDirectionTooSmall4

Величина поискового направления меньше options.StepTolerance, уравнение решено.

FunctionChangeBelowTolerance3

Изменение в значении целевой функции меньше options.FunctionTolerance, уравнение решено.

StepSizeBelowTolerance

2

Изменитесь в x меньше options.StepTolerance, уравнение решено.

OptimalSolution1

Мера оптимальности первого порядка меньше options.OptimalityTolerance, уравнение решено.

SolverLimitExceeded0

Количество итераций превышает options.MaxIterations или количество вычислений функции превышает options.MaxFunctionEvaluations.

OutputFcnStop-1

Зашедший выходная функция или функция построения графика.

NoFeasiblePointFound-2

Сходившийся к точке, которая не является корнем.

TrustRegionRadiusTooSmall-3

Уравнение, не решенное. Доверительный радиус области стал слишком маленьким (trust-region-dogleg алгоритм).

Эта таблица описывает выходные флаги для fzero решатель.

Выйдите из флага для fzeroЧисловой эквивалентЗначение
OptimalSolution1

Уравнение решено.

OutputFcnStop-1

Зашедший выходная функция или функция построения графика.

FoundNaNInfOrComplex-4

NaNInf, или комплексное число, с которым сталкиваются во время поиска интервала, содержащего изменение знака.

SingularPoint-5

Может сходиться к особой точке.

CannotDetectSignChange-6Не нашел две точки с противоположными знаками значения функции.

Информация о процессе оптимизации, возвращенном как структура. Структура output содержит поля в соответствующем базовом решателе выходное поле, в зависимости от который решатель solve названный:

solve включает дополнительное поле Solver в output структура, чтобы идентифицировать используемый решатель, такой как 'intlinprog'.

Множители Лагранжа в решении, возвращенном как структура.

Примечание

solve не возвращает lambda для решающих уравнение проблем.

Для intlinprog и fminunc решатели, lambda isempty. Для других решателей, lambda имеет эти поля:

  • Variables – Содержит поля для каждой переменной задачи. Каждое имя переменной задачи является структурой с двумя полями:

    • Lower – Множители Лагранжа сопоставлены с переменной LowerBound свойство, возвращенное как массив одного размера с переменной. Ненулевые записи означают, что решение в нижней границе. Эти множители находятся в lambda структуры. Переменные.ниже.

    • Upper – Множители Лагранжа сопоставлены с переменной UpperBound свойство, возвращенное как массив одного размера с переменной. Ненулевые записи означают, что решение в верхней границе. Эти множители находятся в lambda структуры. Переменные.верхний.

  • Constraints – Содержит поле для каждого ограничения задач. Каждое ограничение задач находится в структуре, имя которой является ограничительным именем, и чье значение является числовым массивом одного размера с ограничением. Ненулевые записи означают, что ограничение активно в решении. Эти множители находятся в lambda структуры. Ограничения..

    Примечание

    Элементы ограничительного массива у всех есть то же сравнение (<=, ==, или >=) и все имеют тот же тип (линеен, квадратичен, или нелинеен).

Алгоритмы

свернуть все

Преобразование в форму решателя

Внутренне, solve функция решает задачи оптимизации путем вызова решателя:

  • linprog для линейных объективных и линейных ограничений

  • intlinprog для линейных объективных и линейных ограничений и целочисленных ограничений

  • quadprog для квадратичных объективных и линейных ограничений

  • lsqlin или lsqnonneg для линейного метода наименьших квадратов с линейными ограничениями

  • lsqcurvefit или lsqnonlin для нелинейного метода наименьших квадратов со связанными ограничениями

  • fminunc для проблем без любых ограничений (даже переменные границы) и с общей нелинейной целевой функцией

  • fmincon для проблем с нелинейным ограничением, или с общей нелинейной целью и по крайней мере одним ограничением

  • fzero для скалярного нелинейного уравнения

  • lsqlin для систем линейных уравнений, с или без границ

  • fsolve для систем нелинейных уравнений без ограничений

  • lsqnonlin для систем нелинейных уравнений с границами

Перед solve может вызвать эти функции, проблемы должны быть преобразованы в форму решателя, любого solve или некоторые другие присоединенные функции или объекты. Это преобразование влечет за собой, например, линейные ограничения, имеющие матричное представление, а не переменное выражение оптимизации.

Первый шаг в алгоритме происходит, когда вы помещаете выражения оптимизации в проблему. OptimizationProblem объект имеет внутренний список переменных, используемых в его выражениях. Каждая переменная имеет линейный индекс в выражении и размер. Поэтому переменные задачи имеют подразумеваемую матричную форму. prob2struct функция выполняет преобразование от проблемной формы до формы решателя. Для примера смотрите, Преобразуют проблему в Структуру.

Для нелинейных задач оптимизации, которые используют fmincon или fminunc решатели, solve использование automatic differentiation, чтобы вычислить градиенты целевой функции и нелинейных ограничительных функций. Эти производные применяются, когда цель и ограничительные функции состоят из Поддерживаемых Операций на Переменных и выражениях Оптимизации и не используют fcn2optimexpr функция. Когда автоматическое дифференцирование не применяется, решатели оценивают производные с помощью конечных разностей. Для получения дополнительной информации автоматического дифференцирования, смотрите Автоматический Фон Дифференцирования.

Для значения по умолчанию и позволенных решателей, что solve вызовы, в зависимости от проблемной цели и ограничений, смотрите 'solver'. Можно заменить значение по умолчанию при помощи 'solver' аргумент пары "имя-значение" при вызове solve.

Для алгоритма, что intlinprog использование, чтобы решить задачи MILP, см. intlinprog Алгоритм. Для алгоритмов, что linprog использование, чтобы решить задачи линейного программирования, см. Линейные Алгоритмы Программирования. Для алгоритмов, что quadprog использование, чтобы решить задачи квадратичного программирования, см. Алгоритмы Квадратичного программирования. Для линейного или алгоритмов решателя нелинейного метода наименьших квадратов, смотрите Наименьшие квадраты (Подбор кривой Модели) Алгоритмы. Для нелинейных алгоритмов решателя см. Неограниченные Нелинейные Алгоритмы Оптимизации и Ограниченные Нелинейные Алгоритмы Оптимизации.

Для нелинейного решения уравнения, solve внутренне представляет каждое уравнение как различие между левыми и правыми сторонами. То solve попытки минимизировать сумму квадратов компонентов уравнения. Для алгоритмов для решения нелинейных систем уравнений смотрите, что уравнение Решает Алгоритмы. Когда проблема также имеет границы, solve вызовы lsqnonlin минимизировать сумму квадратов компонентов уравнения. Смотрите Наименьшие квадраты (Подбор кривой Модели) Алгоритмы.

Примечание

Если ваша целевая функция является суммой квадратов, и вы хотите solve чтобы распознать его как таковой, запишите его как sum(expr.^2), и не как expr'*expr или любая другая форма. Внутренний синтаксический анализатор распознает только явные суммы квадратов. Для получения дополнительной информации смотрите Целевую функцию Записи для Основанных на проблеме Наименьших квадратов. Для примера смотрите Неотрицательную линейную задачу для метода наименьших квадратов, Основанную на проблеме.

Автоматическое дифференцирование

Автоматическое дифференцирование (AD) применяется solve и prob2struct функции при следующих условиях:

Когда AD применяетсяВсе ограничительные поддерживаемые функцииОдно или несколько ограничений, не поддержанных
Поддерживаемая целевая функцияAD используется для цели и ограниченийAD, используемый для цели только
Целевая функция, не поддерживаемаяAD, используемый для ограничений толькоAD, не используемый

Когда этим условиям не удовлетворяют, solve оценочные градиенты конечными разностями, и prob2struct не создает градиенты в его сгенерированных файлах функции.

Примечание

Использовать автоматические производные в проблеме, преобразованной prob2struct, передайте опции, задающие эти производные.

options = optimoptions('fmincon','SpecifyObjectiveGradient',true,...
    'SpecifyConstraintGradient',true);
problem.options = options;

В настоящее время AD работает только на первые производные; это не применяется к вторым или производным высшего порядка. Так, например, если вы хотите использовать аналитический Гессиан, чтобы ускорить вашу оптимизацию, вы не можете использовать solve непосредственно, и должен вместо этого использовать подход, описанный в Производных Предоставления в Основанном на проблеме Рабочем процессе.

Вопросы совместимости

развернуть все

Ошибки, запускающиеся в R2018b

Введенный в R2017b
Для просмотра документации необходимо авторизоваться на сайте