Запланируйте оптимальную траекторию
[
вычисляет выполнимую траекторию, traj
,index
,cost
,flag
] = plan(planner
,start
)traj
, из списка траекторий кандидата, сгенерированных от trajectoryOptimalFrenet
объект, planner
запуск
задан как векторный [s, ds/dt, d2s/dt2, l, dl/ds, d2l/ds2]
с шестью элементами, где s является длиной дуги от первой точки в ссылочном пути, и l является нормальным расстоянием от самой близкой точки в s на ссылочном пути.
Выходная траектория, traj
, также имеет связанный cost
и index
для свойства TrajectoryList планировщика. flag
числовое выходное состояние указания флага решения.
Чтобы улучшить результаты планирования выход, измените параметры на planner
объект.
В этом примере показано, как запланировать оптимальную траекторию с помощью trajectoryOptimalFrenet
объект.
Создайте и присвойте карту блоку проверки допустимости состояния
Создайте объект блока проверки допустимости состояния для проверки столкновения.
stateValidator = validatorOccupancyMap;
Создайте карту сетки препятствия.
grid = zeros(50,100); grid(24:26,48:53) = 1;
Создайте binaryOccupancyMap
с картой сетки.
map = binaryOccupancyMap(grid);
Присвойте карту блоку проверки допустимости состояния.
stateValidator.Map = map;
Запланируйте и визуализируйте траекторию
Создайте ссылочный путь для планировщика, чтобы следовать.
refPath = [0,25;100,25];
Инициализируйте объект планировщика ссылочным путем и блок проверки допустимости состояния.
planner = trajectoryOptimalFrenet(refPath,stateValidator);
Присвойте продольное конечное состояние, боковое отклонение и максимальные ускоряющие значения.
planner.TerminalStates.Longitudinal = 100; planner.TerminalStates.Lateral = -10:5:10; planner.FeasibilityParameters.MaxAcceleration = 10;
Задайте значение смещения отклонения близко к левому боковому конечному состоянию, чтобы приоритизировать оставленный изменения маршрута.
planner.DeviationOffset = 5;
Планирование траектории
Начальное декартово состояние транспортного средства.
initCartState = [0 25 pi/9 0 0 0];
Преобразуйте декартово состояние транспортного средства к состоянию Frenet.
initFrenetState = cart2frenet(planner,initCartState);
Запланируйте траекторию от начального состояния Frenet.
plan(planner,initFrenetState);
Визуализация траектории
Визуализируйте карту и траектории.
show(map) hold on show(planner,'Trajectory','all')
В этом примере показано, как разделить продольные конечные состояния в оптимальном планировании траектории с помощью trajectoryOptimalFrenet
объект.
Создайте и присвойте карту блоку проверки допустимости состояния
Создайте объект блока проверки допустимости состояния для проверки столкновения.
statevalidator = validatorOccupancyMap;
Создайте карту сетки препятствия.
grid = zeros(50,100); grid(25:27,28:33) = 1; grid(16:18,37:42) = 1; grid(29:31,72:77) = 1;
Создайте binaryOccupancyMap
с картой сетки.
map = binaryOccupancyMap(grid);
Присвойте карту блоку проверки допустимости состояния.
statevalidator.Map = map;
Запланируйте и визуализируйте траекторию
Создайте ссылочный путь для планировщика, чтобы следовать.
refPath = [0,25;30,30;75,20;100,25];
Инициализируйте объект планировщика ссылочным путем и блок проверки допустимости состояния.
planner = trajectoryOptimalFrenet(refPath,statevalidator);
Присвойте продольное конечное состояние, боковое отклонение и максимальные ускоряющие значения.
planner.TerminalStates.Longitudinal = 100; planner.TerminalStates.Lateral = -5:5:5; planner.FeasibilityParameters.MaxAcceleration = 10;
Присвойте номер разделов для продольного конечного состояния.
planner.NumSegments = 3;
Планирование траектории
Начальное состояние Frenet транспортного средства.
initFrenetState = zeros(1,6);
Запланируйте траекторию от начального состояния Frenet.
plan(planner,initFrenetState);
Визуализация траектории
Визуализируйте карту и траектории.
show(map) hold on show(planner,'Trajectory','all') hold on
Сгенерируйте контуры маршрута
Вычислите конец ссылочного пути, как Frenet утверждает.
refPathEnd = cart2frenet(planner,[planner.Waypoints(end,:) 0 0 0 0]);
Вычислите смещения маршрута с обеих сторон боковых конечных состояний с половиной значения ширины маршрута.
laneOffsets = unique([planner.TerminalStates.Lateral+2.5 planner.TerminalStates.Lateral-2.5]);
Вычислите положения маршрутов в Декартовом состоянии.
numLaneOffsets = numel(laneOffsets); xRefPathEnd = ceil(refPathEnd(1)); laneXY = zeros((numLaneOffsets*xRefPathEnd)+numLaneOffsets,2); xIndex = 0; for laneID = 1:numLaneOffsets for x = 1:xRefPathEnd laneCart = frenet2cart(planner,[x 0 0 laneOffsets(laneID) 0 0]); xIndex = xIndex + 1; laneXY(xIndex,:) = laneCart(1:2); end xIndex = xIndex + 1; laneXY(xIndex,:) = NaN(1,2); end
Постройте контуры маршрута.
plot(laneXY(:,1),laneXY(:,2),'LineWidth',0.5,'Color',[0.5 0.5 0.5],'DisplayName','Lane Boundaries','LineStyle','--')
planner
— Оптимальный планировщик траектории на пробеле FrenettrajectoryOptimalFrenet
объектОптимальный планировщик траектории на пробеле Frenet в виде trajectoryOptimalFrenet
объект.
start
— Начальное состояние FrenetНачальное состояние Frenet в виде 1 6 векторного [s, ds/dt, d2s/dt2, l, dl/ds, d2l/ds2]
.
s задает длину дуги от первой точки в ссылочном пути в метрах.
ds/dt задает первую производную длины дуги.
d2s/dt2 задает вторую производную длины дуги.
l задает нормальное расстояние от самой близкой точки в ссылочном пути в метрах.
dl/ds задает первую производную нормального расстояния.
d2l/ds2 задает вторую производную нормального расстояния.
traj
— Выполнимая траектория с минимальной стоимостьюВыполнимая траектория с минимальной стоимостью, возвращенной как n-by-7 матрица [x, y, theta, kappa, speed, acceleration, time]
, где n является количеством траектории waypoints.
x и y задают положение в метрах.
theta задает угол ориентации в радианах.
kappa задает искривление в m-1
.
speed задает скорость в m/s
.
acceleration задает ускорение в m/s2
.
time задает время в s
.
index
— Индекс выполнимой траектории с минимальной стоимостьюИндекс выполнимой траектории с минимальной стоимостью, возвращенной как положительный целочисленный скаляр.
cost
— Наименьшее количество стоимости выполнимой траекторииНаименьшее количество стоимости выполнимой траектории, возвращенной как положительная скалярная величина.
flag
— Выйдите из флага, указывающего на состояние решения
| 1
Выйдите из флага, указывающего на состояние решения, возвратил любого как 0
или 1
.
0 — Оптимальная траектория была найдена.
1 — Никакая выполнимая траектория не существует.
Когда никакая выполнимая траектория не существует, планировщик возвращает пустую траекторию.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.