Создать CufflinksOptions объект для определения параметров cfflinks, таких как количество параллельных потоков и папка вывода для хранения результатов.
Файлы SAM, представленные в этом примере, содержат выровненные чтения для Mycoplasma pneumoniae из двух образцов с тремя репликациями каждый. Считывание моделируется 100 bp для двух генов (gyrA и gyrB) расположены рядом друг с другом на геноме. Все операции чтения сортируются по ссылочному положению, как требуется cufflinks.
Соберите транскриптом из выровненных считываний.
gtfs - список GTF-файлов, содержащих собранные изоформы.
Сравнение собранных изоформ с помощью cuffcompare.
Объединить собранные стенограммы с помощью cuffmerge.
mergedGTF сообщает только одну стенограмму. Это потому, что два интересующих гена расположены рядом друг с другом, и cuffmerge не может различить два различных гена. Вести cuffmerge, использовать эталонный GTF (gyrAB.gtf), содержащий информацию об этих двух генах. Если файл находится не в том же каталоге, в котором выполняется cuffmerge из, необходимо также указать путь к файлу.
Рассчитайте плотность (уровни выражений) на основе выровненных чтений для каждого образца.
Оцените значимость изменений в экспрессии генов и транскриптов между состояниями, выполнив дифференциальное тестирование с использованием cuffdiff. cuffdiff функция работает в два отдельных шага: функция сначала оценивает изобилие из выровненных считываний, а затем выполняет статистический анализ. В некоторых случаях (например, распределение вычислительной нагрузки между несколькими работниками) выполнение этих двух шагов по отдельности является желательным. После выполнения первого шага с cuffquant, затем можно использовать двоичный выходной файл CXB в качестве входных данных для cuffdiff для выполнения статистического анализа. Поскольку cuffdiff возвращает несколько файлов, укажите рекомендуемый выходной каталог.
Отображение таблицы, содержащей результаты теста дифференциальной экспрессии для двух генов gyrB и gyrA.
ans =
2×14 table
test_id gene_id gene locus sample_1 sample_2 status value_1 value_2 log2_fold_change_ test_stat p_value q_value significant
________________ _____________ ______ _______________________ ________ ________ ______ __________ __________ _________________ _________ _______ _______ ___________
'TCONS_00000001' 'XLOC_000001' 'gyrB' 'NC_000912.1:2868-7340' 'q1' 'q2' 'OK' 1.0913e+05 4.2228e+05 1.9522 7.8886 5e-05 5e-05 'yes'
'TCONS_00000002' 'XLOC_000001' 'gyrA' 'NC_000912.1:2868-7340' 'q1' 'q2' 'OK' 3.5158e+05 1.1546e+05 -1.6064 -7.3811 5e-05 5e-05 'yes'
Вы можете использовать cuffnorm для создания нормализованных таблиц выражений для дальнейшего анализа. cuffnorm результаты полезны, когда у вас есть много образцов, и вы хотите сгруппировать их или построить график уровней экспрессии для генов, которые важны в вашем исследовании. Обратите внимание, что невозможно выполнить дифференциальный анализ выражений с помощью cuffnorm.
Укажите массив ячеек, где каждый элемент является строковым вектором, содержащим имена файлов для одного образца с репликациями.
Отображение таблицы, содержащей нормализованные уровни выражений для каждого транскрипта.
ans =
2×7 table
tracking_id q1_0 q1_2 q1_1 q2_1 q2_0 q2_2
________________ __________ __________ __________ __________ __________ __________
'TCONS_00000001' 1.0913e+05 78628 1.2132e+05 4.3639e+05 4.2228e+05 4.2814e+05
'TCONS_00000002' 3.5158e+05 3.7458e+05 3.4238e+05 1.0483e+05 1.1546e+05 1.1105e+05
Имена столбцов, начинающиеся с q, имеют формат conditionX_N, указывающий, что столбец содержит значения для репликации N условия X.