Подгонка геометрического преобразования к парам управляющих точек
принимает пары контрольных точек, tform = fitgeotrans(movingPoints,fixedPoints,transformationType)movingPoints и fixedPointsи использует их для вывода геометрического преобразования, заданного transformationType.
подходит под tform = fitgeotrans(movingPoints,fixedPoints,'polynomial',degree)PolynomialTransformation2D пары «объект - контрольная точка» movingPoints и fixedPoints. Задание степени полиномиального преобразования degree, которые могут быть 2, 3 или 4.
подходит под tform = fitgeotrans(movingPoints,fixedPoints,'pwl')PiecewiseLinearTransformation2D пары «объект - контрольная точка» movingPoints и fixedPoints. Это преобразование отображает управляющие точки, разбивая плоскость на локальные кусочно-линейные области. Различные аффинные преобразования отображают контрольные точки в каждой локальной области.
подходит под tform = fitgeotrans(movingPoints,fixedPoints,'lwm',n)LocalWeightedMeanTransformation2D пары «объект - контрольная точка» movingPoints и fixedPoints. Локальное взвешенное среднее преобразование создает отображение путем вывода полинома в каждой контрольной точке с использованием соседних управляющих точек. Отображение в любом месте зависит от средневзвешенного значения этих многочленов. n ближайшие точки используются для вывода полиномиального преобразования второй степени для каждой пары управляющих точек.
[1] Гоштасби, Ардешир, «Кусочно-линейные картографические функции для регистрации изображения», Распознавание образов, том 19, 1986, стр. 459-466.
[2] Гоштасби, Ардешир, «Регистрация изображения методами локального приближения», Image and Vision Computing, Vol. 6, 1988, pp. 255-261.