Переименование наблюдаемых объектов в SimData
Загрузить модель распределения лекарств, опосредованных мишенью (TMDD).
sbioloadproject tmdd_with_TO.sbprojУстановить целевую заполняемость (TO) в качестве ответа.
cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';Получите информацию о дозировке.
d = getdose(m1,'Daily Dose');Сканирование по различным дозам с использованием SimBiology.Scenarios объект. Для этого сначала параметризуйте Amount свойство дозы. Затем измените соответствующее значение параметра, используя Scenarios объект.
amountParam = addparameter(m1,'AmountParam','Units',d.AmountUnits); d.Amount = 'AmountParam'; d.Active = 1; doseSamples = SimBiology.Scenarios('AmountParam',linspace(0,300,31));
Создать SimFunction для моделирования модели. Набор TO в качестве выходных данных моделирования.
% Suppress informational warnings that are issued during simulation. warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY'); f = createSimFunction(m1,doseSamples,'TO',d)
f =
SimFunction
Parameters:
Name Value Type Units
_______________ _____ _____________ ____________
{'AmountParam'} 1 {'parameter'} {'nanomole'}
Observables:
Name Type Units
______ _____________ _________________
{'TO'} {'parameter'} {'dimensionless'}
Dosed:
TargetName TargetDimension Amount AmountValue AmountUnits
_______________ ___________________________________ _______________ ___________ ____________
{'Plasma.Drug'} {'Amount (e.g., mole or molecule)'} {'AmountParam'} 1 {'nanomole'}
warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');
Моделирование модели с использованием количеств доз, генерируемых Scenarios объект. В этом случае объект генерирует 31 различную дозу; следовательно, модель моделируется 31 раз и генерирует SimData массив.
doseTable = getTable(d); sd = f(doseSamples,cs.StopTime,doseTable)
SimBiology Simulation Data Array: 31-by-1
ModelName: TMDD
Logged Data:
Species: 0
Compartment: 0
Parameter: 1
Sensitivity: 0
Observable: 0
Постройте график результатов моделирования. Также добавьте две опорные линии, которые представляют пороговые значения безопасности и эффективности для TO. В этом примере предположим, что любой TO значение выше 0,85 небезопасно, и любое TO значение ниже 0,15 не имеет эффективности.
h = sbioplot(sd); time = sd(1).Time; h.NextPlot = 'add'; safetyThreshold = plot(h,[min(time), max(time)],[0.85, 0.85],'DisplayName','Safety Threshold'); efficacyThreshold = plot(h,[min(time), max(time)],[0.15, 0.15],'DisplayName','Efficacy Threshold');

Выполните постобработку результатов моделирования. Узнайте, какие количества доз эффективны, соответствующие TO ответы в пределах порогов безопасности и эффективности. Для этого добавьте наблюдаемое выражение к данным моделирования.
% Suppress informational warnings that are issued during simulation. warning('off','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON'); newSD = addobservable(sd,'stat1','max(TO) < 0.85 & min(TO) > 0.15','Units','dimensionless')
SimBiology Simulation Data Array: 31-by-1
ModelName: TMDD
Logged Data:
Species: 0
Compartment: 0
Parameter: 1
Sensitivity: 0
Observable: 1
Функция addobservable оценивает новое наблюдаемое выражение для каждого SimData в sd и возвращает вычисленные результаты как новые SimData массив, newSD, который теперь имеет добавленное наблюдаемое (stat1).
SimBiology хранит наблюдаемые результаты в двух различных свойствах SimData объект. Если результаты являются скалярными, они сохраняются в SimData.ScalarObservables. В противном случае они хранятся в SimData.VectorObservables. В этом примере stat1 наблюдаемое выражение является скалярно-значимым.
Извлеките скалярные наблюдаемые значения и постройте их график по количеству доз.
scalarObs = vertcat(newSD.ScalarObservables); doseAmounts = generate(doseSamples); figure plot(doseAmounts.AmountParam,scalarObs.stat1,'o','MarkerFaceColor','b')

График показывает, что количества доз в диапазоне от 50 до 180 наномолей обеспечивают TO ответы, которые находятся в пределах целевых пороговых значений эффективности и безопасности.
Можно обновить наблюдаемое выражение с помощью различных пороговых сумм. Функция пересчитывает выражение и возвращает результаты в новом SimData массив объектов.
newSD2 = updateobservable(newSD,'stat1','max(TO) < 0.75 & min(TO) > 0.30');
Переименуйте наблюдаемое выражение. Функция переименовывает наблюдаемое, обновляет любые выражения, которые ссылаются на переименованное наблюдаемое (если применимо), и возвращает результаты в новом SimData массив объектов.
newSD3 = renameobservable(newSD2,'stat1','EffectiveDose');
Восстановите параметры предупреждения.
warning('on','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
sdin - Входные данные моделированияSimData объект | массив SimData объектыВходные данные моделирования, указанные как SimData объект или массив объектов.
oldNames - Существующие названия наблюдаемых объектовСуществующие имена наблюдаемых объектов, указанные как символьный вектор, строка, строковый вектор или массив ячеек символьных векторов.
Пример: {'max_drug','mean_drug'}
Типы данных: char | string | cell
newNames - Новые названия наблюдаемых объектовНовые имена наблюдаемых объектов, указанные как символьный вектор, строка, строковый вектор или массив ячеек символьных векторов. Количество новых имен должно соответствовать количеству старых имен.
Каждое новое имя должно быть уникальным в SimData объект, что означает, что он не может совпадать с именем любого другого наблюдаемого, вида, отделения, параметра или реакции, на которые ссылается SimData объект.
Пример: {'MAX','MEAN'}
Типы данных: char | string | cell
sdout - данные моделирования с наблюдаемыми результатами;SimData объект | массив SimData объектыДанные моделирования с наблюдаемыми результатами, возвращенные как SimData объект или массив объектов.
Имеется измененная версия этого примера. Открыть этот пример с помощью изменений?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.