exponenta event banner

disp

Класс: модель GeneralizedLinearDepartedModel

Отображение обобщенной линейной модели смешанных эффектов

Синтаксис

Описание

пример

disp(glme) отображает подогнанную обобщенную линейную модель смешанных эффектов glme.

Входные аргументы

развернуть все

Обобщенная линейная модель смешанных эффектов, указанная как GeneralizedLinearMixedModel объект. Свойства и методы этого объекта см. в разделе GeneralizedLinearMixedModel.

Примеры

развернуть все

Загрузите образцы данных.

load mfr

Эти смоделированные данные получены от производственной компании, которая эксплуатирует 50 заводов по всему миру, причем на каждом заводе выполняется пакетный процесс создания готового продукта. Компания хочет уменьшить количество дефектов в каждой партии, поэтому разработала новый производственный процесс. Чтобы проверить эффективность нового процесса, компания выбрала 20 своих заводов случайным образом для участия в эксперименте: Десять заводов реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждом из 20 заводов компания провела пять партий (всего 100 партий) и записала следующие данные:

  • Флаг, указывающий, использовала ли партия новый процесс (newprocess)

  • Время обработки для каждой партии, в часах (time)

  • Температура партии, в градусах Цельсия (temp)

  • Категориальная переменная, указывающая поставщика химического вещества, используемого в партии (supplier)

  • Количество дефектов в партии (defects)

Данные также включают time_dev и temp_dev, которые представляют собой абсолютное отклонение времени и температуры соответственно от технологического стандарта 3 часов при 20 градусах Цельсия.

Подгонка обобщенной линейной модели смешанных эффектов с использованием newprocess, time_dev, temp_dev, и supplier в качестве предикторов с фиксированными эффектами. Включить термин случайных эффектов для перехвата, сгруппированного по factory, чтобы учесть различия в качестве, которые могут существовать из-за специфичных для завода вариаций. Переменная ответа defects имеет распределение Пуассона, и соответствующей функцией связи для этой модели является log. Для оценки коэффициентов используется метод аппроксимации Лапласа. Укажите фиктивную кодировку переменной как 'effects'так что фиктивные переменные коэффициенты суммируются до 0.

Количество дефектов можно смоделировать с помощью распределения Пуассона

defectsij∼Poisson (мкидж)

Это соответствует обобщенной линейной модели смешанных эффектов

log (micij) = β0 + β1newprocessij + β2time _ devij + β3temp _ devij + β4supplier _ Cij + β5supplier _ Bij + bi,

где

  • defectsij - количество дефектов, наблюдаемых в партии, произведенной заводом i во время партии j.

  • pciij - среднее число дефектов, соответствующих заводу i (где i = 1,2,..., 20) во время партии j (где j = 1,2,..., 5).

  • newprocessij, time_devij и temp_devij являются измерениями для каждой переменной, которые соответствуют фабрике i во время партии j. Например, newprocessij указывает, использовала ли партия, произведенная заводом i во время партии j, новый процесс.

  • supplier_Cij и supplier_Bij являются фиктивными переменными, которые используют кодирование эффектов (сумма к нулю), чтобы указать, C или B, соответственно, поставлялись технологические химикаты для партии, произведенной заводом i во время партии j.

  • bi∼N (0, startb2) - перехват случайных эффектов для каждой фабрики i, который учитывает специфичные для фабрики вариации качества.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Отображение модели.

disp(glme)
Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                   Estimate     SE          tStat       DF    pValue    
    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078


    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.31381 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

Model information таблица отображает общее количество наблюдений в данных выборки (100), количество коэффициентов фиксированных и случайных эффектов (6 и 20 соответственно) и количество параметров ковариации (1). Это также указывает, что переменная ответа имеет Poisson распределение, функция линии связи Log, и метод подгонки Laplace.

Formula указывает спецификацию модели с помощью нотации Уилкинсона.

Model fit statistics В таблице представлены статистические данные, используемые для оценки соответствия модели. Это включает в себя информационный критерий Акаике (AIC), байесовский информационный критерий (BIC) значения, логарифмическое правдоподобие (LogLikelihood) и отклонение (Deviance) значения.

Fixed effects coefficients таблица показывает, что fitglme возвращены 95% доверительные интервалы. Он содержит одну строку для каждого предиктора с фиксированными эффектами, и каждый столбец содержит статистику, соответствующую этому предиктору. Столбец 1 (Name) содержит имя каждого коэффициента с фиксированными эффектами, столбец 2 (Estimate) содержит его оценочное значение и столбец 3 (SE) содержит стандартную ошибку коэффициента. Колонка 4 (tStat) содержит t-статистику для проверки гипотезы, что коэффициент равен 0. Столбец 5 (DF) и колонку 6 (pValue) содержат степени свободы и p-значение, которые соответствуют t-статистике соответственно. Последние два столбца (Lower и Upper) отображать нижний и верхний пределы, соответственно, 95% доверительного интервала для каждого коэффициента с фиксированными эффектами.

Random effects covariance parameters отображает таблицу для каждой переменной группировки (здесь, только factory), включая его общее количество уровней (20), и тип и оценку параметра ковариации. Здесь, std указывает, что fitglme возвращает стандартное отклонение случайного эффекта, связанного с заводским предиктором, которое имеет оценочное значение 0,31381. Также отображается таблица, содержащая тип параметра ошибки (здесь квадратный корень параметра дисперсии) и его оценочное значение 1.

Стандартный экран, созданный fitglme не обеспечивает доверительные интервалы для параметров случайных эффектов. Для вычисления и отображения этих значений используйте covarianceParameters.

Подробнее

развернуть все