Вейвлет-спектр пакетов
[SPEC,TIMES,FREQ] = wpspectrum(WPT,Fs)
[...] = wpspectrum(WPT,Fs,'plot')
[...,TNFO] = wpspectrum(...)
[ возвращает матрицу оценок спектра вейвлет-пакетов, SPEC,TIMES,FREQ] = wpspectrum(WPT,Fs)SPEC, для двоичного объекта дерева вейвлет-пакетов, WPT. Fs - частота дискретизации в Герце. SPEC - матрица 2J-by-N, где J - уровень вейвлет-пакетного преобразования, а N - длина временного ряда. TIMES является 1-by-N вектором времени и FREQ - 1-by-2J вектор частот.
[...] = wpspectrum( отображает спектр вейвлет-пакетов.WPT,Fs,'plot')
[..., возвращает терминальные узлы дерева вейвлет-пакетов в порядке частоты. TNFO] = wpspectrum(...)
|
|
|
Частота дискретизации в Герце как скаляр класса double. По умолчанию: 1 |
|
Вектор символов |
|
Вейвлет-спектр пакетов. Частотный интервал между строками |
|
Временной вектор. |
|
Частотный вектор. |
|
Терминальные узлы. |
wpspectrum вычисляет спектр вейвлет-пакетов следующим образом:
Извлекают коэффициенты вейвлет-пакета, соответствующие терминальным узлам. Возьмем абсолютное значение коэффициентов.
Упорядочить коэффициенты вейвлет-пакета по порядку частот.
Определяют временную протяженность на исходной временной оси, соответствующей каждому коэффициенту вейвлет-пакета. Повторяют каждый коэффициент вейвлет-пакета, чтобы заполнить временные промежутки между соседними коэффициентами вейвлет-пакета и создать вектор, равный по длине узлу 0 объекта дерева вейвлет-пакетов.
Викерхаузер, М.В. Лекции по алгоритмам вейвлет-пакетов, Технический отчет, Вашингтонский университет, факультет математики, 1992.