forward

Вычислите выход нейронной сети для глубокого обучения для обучения

Описание

Некоторые слои глубокого обучения ведут себя по-разному во время обучения и вывода (предсказания). Например, во время обучения слои выпадения случайным образом устанавливают входные элементы в нуль, чтобы помочь предотвратить сверхподбор кривой, но во время вывода слои выпадения не изменяют вход.

Чтобы вычислить выходы сети для обучения, используйте forward функция. Чтобы вычислить выходы сети для вывода, используйте predict функция.

пример

dlY = forward(dlnet,dlX) возвращает выходной сигнал сети dlY во время обучения учитывая входные данные dlX.

dlY = forward(dlnet,dlX1,...,dlXM) возвращает выходной сигнал сети dlY во время обучения учитывая M входы dlX1, ...,dlXM и сетевой dlnet который имеет M входы и один выход.

[dlY1,...,dlYN] = forward(___) возвращает N выходы dlY1, …, dlYN во время обучения для сетей, которые имеют N формирует выходные параметры с использованием любого из предыдущих синтаксисов.

[dlY1,...,dlYK] = forward(___,'Outputs',layerNames) возвращает выходы dlY1, …, dlYK во время обучения для заданных слоев с использованием любого из предыдущих синтаксисов.

[___] = forward(___,'Acceleration',acceleration) также задает оптимизацию эффективности, используемую во время обучения, в дополнение к входным параметрам в предыдущих синтаксисах.

[___,state] = forward(___) также возвращает обновленное состояние сети.

Примеры

свернуть все

В этом примере показано, как обучить сеть, которая классифицирует рукописные цифры с пользовательским расписанием скорости обучения.

Если trainingOptions не предоставляет необходимые опции (для примера, пользовательское расписание скорости обучения), тогда можно задать свой собственный пользовательский цикл обучения с помощью автоматической дифференциации.

Этот пример обучает сеть классифицировать рукописные цифры с основанным на времени расписанием скорости обучения с распадом: для каждой итерации решатель использует скорость обучения, заданную как ρt=ρ01+kt, где t - число итерации, ρ0 является начальной скоростью обучения, и k является распадом.

Загрузка обучающих данных

Загрузите данные цифр в виде datastore изображений с помощью imageDatastore и укажите папку, содержащую данные изображения.

dataFolder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ....
    'LabelSource','foldernames');

Разделите данные на наборы для обучения и валидации. Отложите 10% данных для валидации с помощью splitEachLabel функция.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,'randomize');

Сеть, используемая в этом примере, требует изображений входа размера 28 на 28 на 1. Чтобы автоматически изменить размер обучающих изображений, используйте дополненный image datastore. Задайте дополнительные операции увеличения для выполнения на обучающих изображениях: случайным образом переведите изображения до 5 пикселей в горизонтальной и вертикальной осях. Увеличение количества данных помогает предотвратить сверхподбор кривой сети и запоминание точных деталей обучающих изображений.

inputSize = [28 28 1];
pixelRange = [-5 5];
imageAugmenter = imageDataAugmenter( ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,'DataAugmentation',imageAugmenter);

Чтобы автоматически изменить размер изображений валидации, не выполняя дальнейшего увеличения данных, используйте хранилище datastore с дополненными изображениями, не задавая никаких дополнительных операций предварительной обработки.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Определите количество классов в обучающих данных.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Определение сети

Определите сеть для классификации изображений.

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','input')
    convolution2dLayer(5,20,'Name','conv1')
    batchNormalizationLayer('Name','bn1')
    reluLayer('Name','relu1')
    convolution2dLayer(3,20,'Padding','same','Name','conv2')
    batchNormalizationLayer('Name','bn2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding','same','Name','conv3')
    batchNormalizationLayer('Name','bn3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

Создайте dlnetwork объект из графика слоев.

dlnet = dlnetwork(lgraph)
dlnet = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [11×2 table]
     Learnables: [14×3 table]
          State: [6×3 table]
     InputNames: {'input'}
    OutputNames: {'softmax'}

Задайте функцию градиентов модели

Создайте функцию modelGradients, перечисленный в конце примера, который принимает dlnetwork объект, мини-пакет входных данных с соответствующими метками и возвращает градиенты потерь относительно настраиваемых параметров в сети и соответствующих потерь.

Настройка опций обучения

Обучайте на десять эпох с мини-партией размером 128.

numEpochs = 10;
miniBatchSize = 128;

Задайте опции для оптимизации SGDM. Задайте начальную скорость обучения 0,01 с распадом 0,01 и импульсом 0,9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Обучите модель

Создайте minibatchqueue объект, который обрабатывает и управляет мини-пакетами изображений во время обучения. Для каждого мини-пакета:

  • Используйте пользовательскую функцию мини-пакетной предварительной обработки preprocessMiniBatch (определено в конце этого примера), чтобы преобразовать метки в переменные с кодировкой с одним горячим контактом.

  • Форматируйте данные изображения с помощью меток размерностей 'SSCB' (пространственный, пространственный, канальный, пакетный). По умолчанию в minibatchqueue объект преобразует данные в dlarray объекты с базовым типом single. Не добавляйте формат к меткам классов.

  • Обучите на графическом процессоре, если он доступен. По умолчанию в minibatchqueue объект преобразует каждый выход в gpuArray при наличии графический процессор. Для использования графический процессор требуется Parallel Computing Toolbox™ и поддерживаемый графический процессор. Для получения информации о поддерживаемых устройствах смотрите Поддержку GPU by Release (Parallel Computing Toolbox).

mbq = minibatchqueue(augimdsTrain,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFcn',@preprocessMiniBatch,...
    'MiniBatchFormat',{'SSCB',''});

Инициализируйте график процесса обучения.

figure
lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

Инициализируйте параметр скорости для решателя SGDM.

velocity = [];

Обучите сеть с помощью пользовательского цикла обучения. Для каждой эпохи перетасуйте данные и закольцовывайте по мини-пакетам данных. Для каждого мини-пакета:

  • Оцените градиенты модели, состояние и потери с помощью dlfeval и modelGradients функционирует и обновляет состояние сети.

  • Определите скорость обучения для основанного на времени расписания скорости обучения с распадом.

  • Обновляйте параметры сети с помощью sgdmupdate функция.

  • Отображение процесса обучения.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq)
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [dlX, dlY] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelGradients function and update the network state.
        [gradients,state,loss] = dlfeval(@modelGradients,dlnet,dlX,dlY);
        dlnet.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity,learnRate,momentum);
        
        % Display the training progress.
        D = duration(0,0,toc(start),'Format','hh:mm:ss');
        addpoints(lineLossTrain,iteration,loss)
        title("Epoch: " + epoch + ", Elapsed: " + string(D))
        drawnow
    end
end

Экспериментальная модель

Протестируйте классификационную точность модели путем сравнения предсказаний на наборе валидации с истинными метками.

После обучения создание предсказаний по новым данным не требует меток. Создание minibatchqueue объект, содержащий только предикторы тестовых данных:

  • Чтобы игнорировать метки для проверки, установите количество выходов мини-очереди пакетов равным 1.

  • Укажите тот же размер мини-пакета, что и для обучения.

  • Предварительно обработайте предикторы, используя preprocessMiniBatchPredictors функции, перечисленной в конце примера.

  • Для одинарного выхода datastore задайте формат пакета 'SSCB' (пространственный, пространственный, канальный, пакетный).

numOutputs = 1;
mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
    'MiniBatchSize',miniBatchSize, ...
    'MiniBatchFcn',@preprocessMiniBatchPredictors, ...
    'MiniBatchFormat','SSCB');

Закольцовывайте мини-пакеты и классифицируйте изображения с помощью modelPredictions функции, перечисленной в конце примера.

predictions = modelPredictions(dlnet,mbqTest,classes);

Оцените точность классификации.

YTest = imdsValidation.Labels;
accuracy = mean(predictions == YTest)
accuracy = 0.9530

Функция градиентов модели

The modelGradients функция принимает dlnetwork dlnet объектамини-пакет входных данных dlX с соответствующими метками Y и возвращает градиенты потерь относительно настраиваемых параметров в dlnet, состояние сети и потери. Чтобы вычислить градиенты автоматически, используйте dlgradient функция.

function [gradients,state,loss] = modelGradients(dlnet,dlX,Y)

[dlYPred,state] = forward(dlnet,dlX);

loss = crossentropy(dlYPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);

loss = double(gather(extractdata(loss)));

end

Функция предсказаний модели

The modelPredictions функция принимает dlnetwork dlnet объекта, а minibatchqueue входных данных mbq, и сетевых классов, и вычисляет предсказания модели путем итерации по всем данным в minibatchqueue объект. Функция использует onehotdecode функция для поиска предсказанного класса с самым высоким счетом.

function predictions = modelPredictions(dlnet,mbq,classes)

predictions = [];

while hasdata(mbq)
    
    dlXTest = next(mbq);
    dlYPred = predict(dlnet,dlXTest);
    
    YPred = onehotdecode(dlYPred,classes,1)';
    
    predictions = [predictions; YPred];
end

end

Функция мини-пакетной предварительной обработки

The preprocessMiniBatch функция предварительно обрабатывает мини-пакет предикторов и меток с помощью следующих шагов:

  1. Предварительно обработайте изображения с помощью preprocessMiniBatchPredictors функция.

  2. Извлеките данные метки из входящего массива ячеек и сгруппируйте в категориальный массив по второму измерению.

  3. Однократное кодирование категориальных меток в числовые массивы. Кодирование в первую размерность создает закодированный массив, который совпадает с формой выходного сигнала сети.

function [X,Y] = preprocessMiniBatch(XCell,YCell)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);

% Extract label data from cell and concatenate.
Y = cat(2,YCell{1:end});

% One-hot encode labels.
Y = onehotencode(Y,1);

end

Функция предварительной обработки мини-пакетных предикторов

The preprocessMiniBatchPredictors функция предварительно обрабатывает мини-пакет предикторов путем извлечения данных изображения из массива входа ячеек и конкатенации в числовой массив. Для входов полутонового цвета, конкатенация по четвертому измерению добавляет третье измерение каждому изображению, чтобы использовать в качестве размерности синглтонного канала.

function X = preprocessMiniBatchPredictors(XCell)

% Concatenate.
X = cat(4,XCell{1:end});

end

Входные параметры

свернуть все

Сеть для пользовательских циклов обучения, заданная как dlnetwork объект.

Входные данные, заданные как форматированное dlarray. Для получения дополнительной информации о dlarray форматы, см. fmt входной параметр dlarray.

Слои для извлечения выходов, заданные как строковые массивы или массив ячеек векторов символов, содержащий имена слоев.

  • Если layerNames(i) соответствует слою с одним выходом, затем layerNames(i) - имя слоя.

  • Если layerNames(i) соответствует слою с несколькими выходами, затем layerNames(i) - имя слоя, за которым следует символ "/"и имя выходного слоя: 'layerName/outputName'.

Оптимизация эффективности, заданная как одно из следующего:

  • 'auto' - Автоматически применить ряд оптимизаций, подходящих для входных сетевых и аппаратных ресурсов.

  • 'none' - Отключить все ускорения.

Опция по умолчанию 'auto'.

Использование 'auto' опция ускорения может предложить преимущества эффективности, но за счет увеличения начального времени запуска. Последующие вызовы с совместимыми параметрами выполняются быстрее. Используйте оптимизацию эффективности, когда вы планируете вызывать функцию несколько раз, используя различные входные данные с одинаковыми размером и формой.

Выходные аргументы

свернуть все

Выходные данные, возвращенные как форматированный dlarray. Для получения дополнительной информации о dlarray форматы, см. fmt входной параметр dlarray.

Обновлено состояние сети, возвращено как таблица.

Сетевое состояние представляет собой таблицу с тремя столбцами:

  • Layer - Имя слоя, заданное как строковый скаляр.

  • Parameter - Имя параметра, заданное как строковый скаляр.

  • Value - Значение параметра, заданное как dlarray объект.

Сетевое состояние содержит информацию, запоминаемую сетью между итерациями. Для примера - состояние слоев LSTM и нормализации партии ..

Обновление состояния dlnetwork использование State свойство.

Вопросы совместимости

расширить все

Поведение изменено в R2021a

Расширенные возможности

Введенный в R2019b
Для просмотра документации необходимо авторизоваться на сайте