Прогнозные наблюдения модели пространства состояний

Этот пример показывает, как предсказать наблюдения известной, инвариантной по времени, модели пространства состояний.

Предположим, что латентный процесс является AR (1). Уравнение состояния

xt=0.5xt-1+ut,

где ut является Гауссовым со средним 0 и стандартным отклонением 1.

Сгенерируйте случайную серию из 100 наблюдений xt, принимая, что серия начинается с 1,5.

T = 100;
ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);
x0 = 1.5;
rng(1); % For reproducibility
x = simulate(ARMdl,T,'Y0',x0);

Предположим далее, что скрытый процесс подвержен аддитивной ошибке измерения. Уравнение наблюдения

yt=xt+εt,

где εt является Гауссовым со средним 0 и стандартным отклонением 0,75. Вместе латентный процесс и уравнения наблюдений составляют модель пространства состояний.

Используйте процесс случайного скрытого состояния (x) и уравнение наблюдения для генерации наблюдений.

y = x + 0.75*randn(T,1);

Задайте четыре матрицы коэффициентов.

A = 0.5;
B = 1;
C = 1;
D = 0.75;

Задайте модель пространства состояний, используя матрицы коэффициентов.

Mdl = ssm(A,B,C,D)
Mdl = 
State-space model type: ssm

State vector length: 1
Observation vector length: 1
State disturbance vector length: 1
Observation innovation vector length: 1
Sample size supported by model: Unlimited

State variables: x1, x2,...
State disturbances: u1, u2,...
Observation series: y1, y2,...
Observation innovations: e1, e2,...

State equation:
x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:
y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means
 x1 
  0 

Initial state covariance matrix
     x1   
 x1  1.33 

State types
     x1     
 Stationary 

Mdl является ssm модель. Проверьте, что модель правильно задана, используя отображение в Командном окне. Программное обеспечение делает вывод, что процесс состояния является стационарным. Впоследствии программное обеспечение устанавливает среднее значение начального состояния и ковариацию в среднее значение и отклонение стационарного распределения модели AR (1).

Спрогнозируйте наблюдения на 10 периодов в будущем и оцените их отклонения.

numPeriods = 10;
[ForecastedY,YMSE] = forecast(Mdl,numPeriods,y);

Постройте график прогнозов с откликами в выборке и 95% интервалами прогноза типа Wald.

ForecastIntervals(:,1) = ForecastedY - 1.96*sqrt(YMSE);
ForecastIntervals(:,2) = ForecastedY + 1.96*sqrt(YMSE);

figure
plot(T-20:T,y(T-20:T),'-k',T+1:T+numPeriods,ForecastedY,'-.r',...
    T+1:T+numPeriods,ForecastIntervals,'-.b',...
    T:T+1,[y(end)*ones(3,1),[ForecastedY(1);ForecastIntervals(1,:)']],':k',...
    'LineWidth',2)
hold on
title({'Observed Responses and Their Forecasts'})
xlabel('Period')
ylabel('Responses')
legend({'Observations','Forecasted observations','95% forecast intervals'},...
    'Location','Best')
hold off

Figure contains an axes. The axes with title Observed Responses and Their Forecasts contains 7 objects of type line. These objects represent Observations, Forecasted observations, 95% forecast intervals.

См. также

|

Похожие примеры

Подробнее о