ecmnhess

Гессиан отрицательной логарифмической функции логарифмической правдоподобности

Описание

пример

Hessian = ecmnhess(Data,Covariance) вычисляет NUMPARAMS-by- NUMPARAMS Гессианская матрица наблюдаемой отрицательной логарифмической функции логарифмической правдоподобности на основе текущих оценок параметров.

Использование ecmnhess после оценки среднего значения и ковариации Data с ecmnmle.

пример

Hessian = ecmnhess(___,InvCovar,MatrixType) добавляет необязательные аргументы для InvCovar и MatrixType.

Примеры

свернуть все

Этот пример показывает, как вычислить Hessian для отрицательной функции логарифмической правдоподобности за пять лет ежедневных общих данных о возврате для 12 запасов компьютерных технологий с шестью аппаратными и шестью программными компаниями

load ecmtechdemo.mat

Период времени для этих данных простирается с 19 апреля 2000 года до 18 апреля 2005 года. Шестой акции в Assets - Google (GOOG), которая начала торговаться 19 августа 2004 года. Так, все возвраты до 20 августа 2004 года отсутствуют и представлены как NaNs. Также у Amazon (AMZN) было несколько дней с отсутствующими значениями, рассеянными в течение последних пяти лет.

[ECMMean, ECMCovar] = ecmnmle(Data)
ECMMean = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

ECMCovar = 12×12

    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
      ⋮

Чтобы вычислить отрицательную функцию логарифмической правдоподобности для ecmnmle, использовать ecmnhess на основе текущих оценок максимальных параметров правдоподобия для ECMCovar.

Hessian = ecmnhess(Data,ECMCovar)
Hessian = 90×90
107 ×

    0.0001    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
    0.0000    0.0001   -0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000    0.0002   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000    0.0003   -0.0000    0.0000   -0.0000   -0.0000   -0.0001   -0.0001   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0000    0.0001   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000    0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0002   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0004   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0001    0.0000    0.0000   -0.0000   -0.0000    0.0002   -0.0001   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
    0.0000   -0.0000   -0.0000   -0.0001   -0.0000    0.0000   -0.0000   -0.0000   -0.0001    0.0004   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
      ⋮

Входные параметры

свернуть все

Данные, заданные как NUMSAMPLES-by- NUMSERIES матрица с NUMSAMPLES выборки NUMSERIES-мерный случайный вектор. Отсутствующие значения обозначаются NaNс.

Типы данных: double

Максимальные оценки параметра правдоподобия для ковариации Data использование алгоритма ECM, заданного как NUMSERIES-by- NUMSERIES матрица.

(Необязательно) Обратная ковариационная матрица, заданная как матрица с использованием inv как:

inv(Covariance)

Типы данных: double

(Необязательно) Матричный формат, заданный как вектор символов со значением:

  • 'full' - Вычисляет полную матрицу Гессия.

  • 'meanonly' - Вычисляет только компоненты матрицы Гессия, сопоставленные со средним значением.

Типы данных: char

Выходные аргументы

свернуть все

Гессианская матрица, возвращенная как NUMPARAMSNUMPARAMS матрица наблюдаемой логарифмической функции логарифмической правдоподобности на основе текущих оценок параметров, где NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2 если MatrixFormat = 'full'. Если на MatrixFormat = 'meanonly', затем NUMPARAMS = NUMSERIES.

Представлено до R2006a