directivity

Системный объект: фазированный. URA
Пакет: поэтапный

Направленность равномерного прямоугольного массива

Синтаксис

D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Описание

D = directivity(H,FREQ,ANGLE) вычисляет Направленность равномерного прямоугольного массива (URA) элементов антенны или микрофона, H, на частотах, заданных FREQ и в углах направления, заданных ANGLE.

Интегрирование, используемое при вычислении направленности массива, имеет минимальную сетку дискретизации 0,1 степеней. Если шаблон имеет ширину луча, меньшую этой, значение направленности будет неточным.

D = directivity(H,FREQ,ANGLE,Name,Value) вычисляет направленность с дополнительными опциями, заданными одним или несколькими Name,Value аргументы в виде пар.

Входные параметры

расширить все

Равномерный прямоугольный массив, заданный как phased.URA Системный объект.

Пример: H = phased.URA

Частоты для вычисления направленности и шаблонов, заданные как положительный скаляр или 1-байт- L вещественный вектор-строка. Частотные модули указаны в герцах.

  • Для антенны, микрофона или гидроакустического гидрофона или элемента проектора, FREQ должно находиться в области значений значений, заданных FrequencyRange или FrequencyVector свойство элемента. В противном случае элемент не выдает отклика, и направленность возвращается следующим –Inf. Большинство элементов используют FrequencyRange свойство кроме phased.CustomAntennaElement и phased.CustomMicrophoneElement, которые используют FrequencyVector свойство.

  • Для массива элементов, FREQ должен находиться в частотной области значений элементов, образующих массив. В противном случае массив не выдает отклика, и направленность возвращается следующим –Inf.

Пример: [1e8 2e6]

Типы данных: double

Углы для вычисления направленности, заданные как 1-байтовый M вещественный вектор-строка или 2-байтовая M вещественная матрица, где M - количество угловых направлений. Угловые модули находятся в степенях. Если ANGLE является матрицей M 2 байта, затем каждый столбец задает направление по азимуту и повышению, [az;el]. Угол азимута должен лежать между -180 ° и 180 °. Угол возвышения должен лежать между -90 ° и 90 °.

Если ANGLE является вектором с M 1 байт, затем каждая запись представляет угол азимута, причем угол возвышения принимается равным нулю.

Угол азимута является углом между осью x и проекцией вектора направления на плоскость xy. Этот угол положителен при измерении от оси x к оси y. Угол возвышения является углом между вектором направления и xy плоскостью. Этот угол положителен при измерении к оси z. См. «Азимут и углы возвышения».

Пример: [45 60; 0 10]

Типы данных: double

Аргументы в виде пар имя-значение

Задайте необязательные разделенные разделенными запятой парами Name,Value аргументы. Name - имя аргумента и Value - соответствующее значение. Name должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN.

Скорость распространения сигнала, заданная как разделенная разделенными запятой парами, состоящая из 'PropagationSpeed' и положительная скалярная величина в метрах в секунду.

Пример: 'PropagationSpeed',physconst('LightSpeed')

Типы данных: double

Веса массивов, заданные как разделенная разделенными запятой парами, состоящая из 'Weights'и N -by-1 комплексно-значимый вектор-столбец или N -by L комплексно-значимая матрица. Веса массивов применяются к элементам массива, чтобы создать управление массивом, сужение или и то, и другое. Размерное N является количеством элементов в массиве. Размерное L является количеством частот, заданным FREQ.

Размерность весовРазмерность FREQЦель
N вектор-на-1 с комплексным значениемСкаляр или 1-байт- L вектор-строкаПрименяет набор весов для одной частоты или для всех L частот.
N -by L комплексно-значимую матрицу1-by- L вектор-строкаПрименяет каждый из L столбцов 'Weights' для соответствующей частоты в FREQ.

Примечание

Используйте комплексные веса, чтобы направить ответ массива в различные направления. Вы можете создать веса, используя phased.SteeringVector Системный объект или можно вычислить собственные веса. В целом, вы применяете гермитову сопряженность перед использованием весов в любой функции Phased Array System Toolbox™ или Системном объекте, таком как phased.Radiator или phased.Collector. Однако для directivity, pattern, patternAzimuth, и patternElevation методы любого массива Системный объект использует вектор управления без сопряжения.

Пример: 'Weights',ones(N,M)

Типы данных: double
Поддержка комплексного числа: Да

Выходные аргументы

расширить все

Направленность, возвращенная как M -by - L матрица. Каждая строка соответствует одному из углов M, заданных как ANGLE. Каждый столбец соответствует одному из L значений частоты, заданных в FREQ. Модули направленности находятся в dBi, где dBi задан как коэффициент усиления элемента относительно изотропного излучателя.

Примеры

расширить все

Вычислите направленность двух равномерных прямоугольных массивов (URA). Первый массив состоит из изотропных антенных элементов. Второй массив состоит из антенных элементов косинуса. В сложение вычислите направленность первого массива, направленного в определенное направление.

Массив изотропных антенных элементов

Во-первых, создайте URA с 10 на 10 элементами изотропных антенных элементов, разнесенных на четверть длины волны. Установите частоту сигнала 800 МГц.

c = physconst('LightSpeed');
fc = 3e8;
lambda = c/fc;
myAntIso = phased.IsotropicAntennaElement;
myArray1 = phased.URA;
myArray1.Element = myAntIso;
myArray1.Size = [10,10];
myArray1.ElementSpacing = [lambda*0.25,lambda*0.25];
ang = [0;0];
d = directivity(myArray1,fc,ang,'PropagationSpeed',c)
d = 15.7753

Массив косинусоидных антенных элементов

Затем создайте URA с 10 на 10 элементами косинуса, антенные элементы также разнесены на четверть длины волны.

myAntCos = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);
myArray2 = phased.URA;
myArray2.Element = myAntCos;
myArray2.Size = [10,10];
myArray2.ElementSpacing = [lambda*0.25,lambda*0.25];
ang = [0;0];
d = directivity(myArray2,fc,ang,'PropagationSpeed',c)
d = 19.7295

Направленность увеличивается из-за направленности антенных элементов косинуса.

Управляемые массивы изотропных антенных элементов

Наконец, управляйте изотропной антенной решеткой до 30 степеней по азимуту и исследуйте направленность под управляемым углом.

ang = [30;0];
w = steervec(getElementPosition(myArray1)/lambda,ang);
d = directivity(myArray1,fc,ang,'PropagationSpeed',c,...
    'Weights',w)
d = 15.3309

Направленность максимальна в управляемом направлении и равна направленности нестойкого массива при борезайте.

Подробнее о

расширить все