resubLoss

Потери классификации реституции для многоклассовой модели выходных кодов с коррекцией ошибок (ECOC)

Описание

пример

L = resubLoss(Mdl) возвращает классификационные потери путем реподституции (L) для многоклассовой модели выходных кодов с коррекцией ошибок (ECOC) Mdl использование обучающих данных, хранящихся в Mdl.X и соответствующие метки классов, хранящиеся в Mdl.Y. По умолчанию, resubLoss использует ошибку классификации для вычисления L.

Классификационные потери (L) - это мера качества обобщения или реституции. Его интерпретация зависит от функции потерь и схемы взвешивания, но в целом лучшие классификаторы дают меньшие значения классификационных потерь.

пример

L = resubLoss(Mdl,Name,Value) возвращает потери классификации с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение". Для примера можно задать функцию потерь, схему декодирования и уровень подробностей.

Примеры

свернуть все

Вычислите потери реституции для модели ECOC с двоичными учащимися SVM.

Загрузите набор данных радужки Фишера. Задайте данные предиктора X и данные отклика Y.

load fisheriris
X = meas;
Y = species;

Обучите модель ECOC с помощью двоичных классификаторов SVM. Стандартизируйте предикторы с помощью шаблона SVM и задайте порядок классов.

t = templateSVM('Standardize',true);
classOrder = unique(Y)
classOrder = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t является объектом шаблона SVM. Во время обучения программное обеспечение использует значения по умолчанию для пустых свойств в t. Mdl является ClassificationECOC модель.

Оцените ошибку классификации реституции, которая является потерями классификации по умолчанию.

L = resubLoss(Mdl)
L = 0.0267

Модель ECOC неправильно классифицирует 2,67% ирисов обучающей выборки.

Определите качество модели ECOC с помощью пользовательской функции потерь, которая учитывает минимальные двоичные потери для каждого наблюдения.

Загрузите набор данных радужки Фишера. Задайте данные предиктора X, данные отклика Y, и порядок классов в Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y)  % Class order
classOrder = 3x1 categorical
     setosa 
     versicolor 
     virginica 

rng(1); % For reproducibility

Обучите модель ECOC с помощью двоичных классификаторов SVM. Стандартизируйте предикторы с помощью шаблона SVM и задайте порядок классов.

t = templateSVM('Standardize',true);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t является объектом шаблона SVM. Во время обучения программное обеспечение использует значения по умолчанию для пустых свойств в t. Mdl является ClassificationECOC модель.

Создайте функцию, которая принимает минимальные потери для каждого наблюдения, затем усредняет минимальные потери для всех наблюдений. S соответствует NegLoss выход resubPredict.

lossfun = @(~,S,~,~)mean(min(-S,[],2));

Вычислите пользовательские потери классификации для обучающих данных.

resubLoss(Mdl,'LossFun',lossfun)
ans = 0.0065

Средние минимальные двоичные потери для обучающих данных 0.0065.

Входные параметры

свернуть все

Полная, обученная многоклассовая модель ECOC, заданная как ClassificationECOC модель, обученная с fitcecoc.

Аргументы в виде пар имя-значение

Задайте необязательные разделенные разделенными запятой парами Name,Value аргументы. Name - имя аргумента и Value - соответствующее значение. Name должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN.

Пример: resubLoss(Mdl,'BinaryLoss','hamming','LossFun',@lossfun) задает 'hamming' как двоичную функцию потерь у обучающегося и пользовательский указатель на функцию @lossfun как функция общих потерь.

Двоичная функция потерь учащегося, заданная как разделенная разделенными запятой парами, состоящая из 'BinaryLoss' и встроенное имя функции потери или указатель на функцию.

  • Эта таблица описывает встроенные функции, где yj является меткой класса для конкретного двоичного ученика (в наборе {-1,1,0}), sj является счетом для j наблюдений, а g (yj, sj) является формулой двоичных потерь.

    ЗначениеОписаниеСчетg (yj, sj)
    'binodeviance'Биномиальное отклонение(–∞,∞)log [1 + exp (-2 yjsj) ]/[ 2log (2)]
    'exponential'Экспоненциал(–∞,∞)exp (- yjsj )/2
    'hamming'Хэмминг[0,1] или (- ∞, ∞)[1 - знак (yjsj) ]/2
    'hinge'Стержень(–∞,∞)макс (0,1 - yjsj )/2
    'linear'Линейный(–∞,∞)(1 – yjsj)/2
    'logit'Логистический(–∞,∞)журнал [1 + exp (- yjsj) ]/[ 2log (2)]
    'quadratic'Квадратный[0,1][1 – yj (2 sj – 1)]2/2

    Программа нормализует двоичные потери так, чтобы потеря была 0,5 при yj = 0. Кроме того, программное обеспечение вычисляет средние двоичные потери для каждого класса.

  • Для пользовательской функции двоичных потерь, например customFunction, задайте его указатель на функцию 'BinaryLoss',@customFunction.

    customFunction имеет следующую форму:

    bLoss = customFunction(M,s)
    где:

    • M - K матрица кодирования L, сохраненная в Mdl.CodingMatrix.

    • s - вектор-строка L 1 байта классификационных баллов.

    • bLoss - классификационные потери. Этот скаляр агрегирует двоичные потери для каждого учащегося в конкретном классе. Для примера можно использовать среднее значение двоичных потерь для агрегирования потерь по учащимся для каждого класса.

    • K - количество классов.

    • L - это количество двоичных учащихся.

    Для примера передачи пользовательской функции двоичных потерь смотрите Предсказание меток теста-образца модели ECOC с помощью Пользовательской функции двоичных потерь.

Значение по умолчанию BinaryLoss значение зависит от областей значений счетов, возвращаемых двоичными учениками. Эта таблица описывает некоторые BinaryLoss по умолчанию значения, основанные на данных допущениях.

ПредположениеЗначение по умолчанию
Все двоичные ученики являются SVM или линейными или ядерными классификационными моделями учащихся SVM.'hinge'
Все двоичные ученики - это ансамбли, обученные AdaboostM1 или GentleBoost.'exponential'
Все двоичные ученики - это ансамбли, обученные LogitBoost.'binodeviance'
Все двоичные ученики являются линейными или ядерными классификационными моделями обучающихся логистической регрессии. Или вы задаете, чтобы предсказать апостериорные вероятности класса путем установки 'FitPosterior',true в fitcecoc.'quadratic'

Чтобы проверить значение по умолчанию, используйте запись через точку для отображения BinaryLoss свойство обученной модели в командной строке.

Пример: 'BinaryLoss','binodeviance'

Типы данных: char | string | function_handle

Схема декодирования, которая агрегирует двоичные потери, заданные как разделенная разделенными запятой парами, состоящая из 'Decoding' и 'lossweighted' или 'lossbased'. Для получения дополнительной информации смотрите Двоичные потери.

Пример: 'Decoding','lossbased'

Функция потерь, заданная как разделенная разделенными запятой парами, состоящая из 'LossFun' и 'classiferror' или указатель на функцию.

  • Задайте встроенную функцию 'classiferror'. В этом случае функция потерь является ошибкой классификации, которая является долей неправильно классифицированных наблюдений.

  • Или задайте свою собственную функцию, используя обозначение указателя на функцию.

    Предположим, что n = size(X,1) - размер и K выборки количество классов. Ваша функция должна иметь подпись lossvalue = lossfun(C,S,W,Cost), где:

    • Выходной аргумент lossvalue является скаляром.

    • Вы задаете имя функции (lossfun).

    • C является n-by- K логическая матрица с строками, указывающими класс, к которому принадлежит соответствующее наблюдение. Порядок столбцов соответствует порядку классов в Mdl.ClassNames.

      Конструкция C путем установки C(p,q) = 1 если наблюдение p находится в q классов, для каждой строки. Установите все другие элементы строки p на 0.

    • S является n-by- K числовая матрица отрицательных значений потерь для классов. Каждая строка соответствует наблюдению. Порядок столбцов соответствует порядку классов в Mdl.ClassNames. Область входа S напоминает выходной аргумент NegLoss от resubPredict.

    • W является n-by-1 числовой вектор весов наблюдений. Если вы сдаете Wпрограммное обеспечение нормирует свои элементы в сумме к 1.

    • Cost является K-by- K числовая матрица затрат на неправильную классификацию. Для примера, Cost = ones(K) – eye(K) задает стоимость 0 для правильной классификации и 1 для неправильной классификации.

    Задайте свою функцию используя 'LossFun',@lossfun.

Типы данных: char | string | function_handle

Опции оценки, заданные как разделенная разделенными запятой парами, состоящая из 'Options' и массив структур, возвращенный statset.

Чтобы вызвать параллельные вычисления:

  • Вам нужна лицензия Parallel Computing Toolbox™.

  • Задайте 'Options',statset('UseParallel',true).

Уровень подробностей, заданный как разделенная разделенными запятой парами, состоящая из 'Verbose' и 0 или 1. Verbose управляет количеством диагностических сообщений, которые программное обеспечение отображений в Командном окне.

Если Verbose является 0тогда программа не отображает диагностические сообщения. В противном случае программа отображает диагностические сообщения.

Пример: 'Verbose',1

Типы данных: single | double

Подробнее о

свернуть все

Ошибка классификации

classification error является двоичной мерой ошибки классификации, которая имеет вид

L=j=1nwjejj=1nwj,

где:

  • wj - вес для j наблюдений. Программа перенормирует веса до суммы 1.

  • ej = 1, если предсказанный класс j наблюдения отличается от его истинного класса, и 0 в противном случае.

Другими словами, классификационная ошибка является долей наблюдений, неправильно классифицированных классификатором.

Двоичные потери

binary loss является функцией класса и классификационной оценки, которая определяет, насколько хорошо двоичный ученик классифицирует наблюдение в класс.

Предположим следующее:

  • mkj является элементом (k, j) матрицы разработки кодирования M (то есть кода, соответствующего k классов двоичных j обучающегося).

  • sj - этот счет двоичных j учащихся для наблюдения.

  • g является функцией двоичных потерь.

  • k^ - предсказанный класс для наблюдения.

В loss-based decoding [Escalera et al.] класс, производящий минимальную сумму двоичных потерь по сравнению с двоичными учениками, определяет предсказанный класс наблюдения, то есть

k^=argminkj=1L|mkj|g(mkj,sj).

В loss-weighted decoding [Escalera et al.] класс, производящий минимальное среднее значение двоичных потерь по сравнению с двоичными учениками, определяет предсказанный класс наблюдения, то есть

k^=argminkj=1L|mkj|g(mkj,sj)j=1L|mkj|.

Allwein et al. предположим, что утраченное декодирование повышает точность классификации путем сохранения значений потерь для всех классов в одной динамической области значений.

В этой таблице приведены поддерживаемые функции потерь, где yj является меткой класса для конкретного двоичного обучающегося (в наборе {-1,1,0}), sj является счетом для j наблюдений и g (yj, sj).

ЗначениеОписаниеСчетg (yj, sj)
'binodeviance'Биномиальное отклонение(–∞,∞)log [1 + exp (-2 yjsj) ]/[ 2log (2)]
'exponential'Экспоненциал(–∞,∞)exp (- yjsj )/2
'hamming'Хэмминг[0,1] или (- ∞, ∞)[1 - знак (yjsj) ]/2
'hinge'Стержень(–∞,∞)макс (0,1 - yjsj )/2
'linear'Линейный(–∞,∞)(1 – yjsj)/2
'logit'Логистический(–∞,∞)журнал [1 + exp (- yjsj) ]/[ 2log (2)]
'quadratic'Квадратный[0,1][1 – yj (2 sj – 1)]2/2

Программа нормализует двоичные потери таким образом, что потеря составляет 0,5 при yj = 0, и агрегирует, используя среднее значение двоичных учащихся [Allwein et al.].

Не путайте двоичные потери с общими классификационными потерями (заданными 'LossFun' Аргумент пары "имя-значение" из loss и predict функции объекта), который измеряет, насколько хорошо классификатор ECOC работает в целом.

Ссылки

[1] Allwein, E., R. Schapire, and Y. Singer. «Сокращение многоклассового числа до двоичного: Унифицирующий подход к маржинальным classifiers». Журнал исследований машинного обучения. Том 1, 2000, стр. 113-141.

[2] Эскалера, С., О. Пужоль, и П. Радева. «О процессе декодирования в троичных выходных кодах с исправлением ошибок». Транзакции IEEE по шаблонному анализу и машинному анализу. Том 32, Выпуск 7, 2010, стр. 120-134.

[3] Эскалера, С., О. Пужоль, и П. Радева. «Разделяемость троичных кодов для разреженных проектов выходных кодов с исправлением ошибок». Pattern Recogn (Повторный вызов шаблона). Том 30, Выпуск 3, 2009, стр. 285-297.

Расширенные возможности

Введенный в R2014b