loss

Класс: ClassificationLinear

Классификационные потери для линейных классификационных моделей

Описание

пример

L = loss(Mdl,X,Y) возвращает классификационные потери для двоичной, линейной классификационной модели Mdl использование данных предиктора в X и соответствующие метки классов в Y. L содержит классификационные частоты ошибок для каждой степени регуляризации в Mdl.

L = loss(Mdl,Tbl,ResponseVarName) возвращает классификационные потери для данных предиктора в Tbl и истинные метки классов в Tbl.ResponseVarName.

L = loss(Mdl,Tbl,Y) возвращает классификационные потери для данных предиктора в таблице Tbl и истинные метки классов в Y.

пример

L = loss(___,Name,Value) задает опции, использующие один или несколько аргументы пары "имя-значение" в дополнение к любой комбинации входных аргументов в предыдущих синтаксисах. Для примера можно задать, что столбцы в данных предиктора соответствуют наблюдениям или задать функцию классификационных потерь.

Входные параметры

расширить все

Двоичная, линейная модель классификации, заданная как ClassificationLinear объект модели. Можно создать ClassificationLinear моделировать объект используя fitclinear.

Данные предиктора, заданные как n -by p полная или разреженная матрица. Эта ориентация X указывает, что строки соответствуют отдельным наблюдениям, а столбцы - отдельным переменным предиктора.

Примечание

Если вы ориентируете матрицу предиктора так, чтобы наблюдения соответствовали столбцам и задавали 'ObservationsIn','columns', тогда вы можете испытать значительное сокращение времени расчета.

Длина Y и количество наблюдений в X должно быть равным.

Типы данных: single | double

Метки классов, заданные как категориальные символьные или строковые массивы; логический или числовой вектор; или массив ячеек из векторов символов.

  • Тип данных Y должно совпадать с типом данных Mdl.ClassNames. (Программа обрабатывает массивы строк как массивы ячеек векторов символов.)

  • Различные классы в Y должен быть подмножеством Mdl.ClassNames.

  • Если Y является символьный массив, тогда каждый элемент должен соответствовать одной строке массива.

  • Длина Y должно быть равно количеству наблюдений в X или Tbl.

Типы данных: categorical | char | string | logical | single | double | cell

Выборочные данные, используемых для обучения модели, заданная как таблица. Каждая строка Tbl соответствует одному наблюдению, и каждый столбец соответствует одной переменной предиктора. Опционально Tbl может содержать дополнительные столбцы для переменной отклика и весов наблюдений. Tbl должны содержать все предикторы, используемые для обучения Mdl. Многополюсные переменные и массивы ячеек, отличные от массивов ячеек векторов символов, не разрешены.

Если Tbl содержит переменную отклика, используемую для обучения Mdl, тогда вам не нужно указывать ResponseVarName или Y.

Если вы обучаете Mdl используя выборочные данные, содержащуюся в таблице, затем входные данные для loss также должно быть в таблице.

Имя переменной отклика, заданное как имя переменной в Tbl. Если Tbl содержит переменную отклика, используемую для обучения Mdl, тогда вам не нужно указывать ResponseVarName.

Если вы задаете ResponseVarName, затем необходимо задать его как вектор символов или строковый скаляр. Для примера, если переменная отклика сохранена как Tbl.Y, затем задайте ResponseVarName как 'Y'. В противном случае программное обеспечение обрабатывает все столбцы Tbl, включая Tbl.Y, как предикторы.

Переменная отклика должна быть категориальными символьными или строковыми массивами; логический или числовой вектор; или массив ячеек из векторов символов. Если переменная отклика является символьным массивом, то каждый элемент должен соответствовать одной строке массива.

Типы данных: char | string

Аргументы в виде пар имя-значение

Задайте необязательные разделенные разделенными запятой парами Name,Value аргументы. Name - имя аргумента и Value - соответствующее значение. Name должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN.

Функция потерь, заданная как разделенная разделенными запятой парами, состоящая из 'LossFun' и встроенное имя функции потери или указатель на функцию.

  • В следующей таблице перечислены доступные функции потерь. Задайте один с помощью соответствующего вектора символов или строкового скаляра.

    ЗначениеОписание
    'binodeviance'Биномиальное отклонение
    'classiferror'Неверно классифицированный коэффициент в десятичных числах
    'exponential'Экспоненциальные потери
    'hinge'Потеря шарнира
    'logit'Логистические потери
    'mincost'Минимальные ожидаемые затраты на неправильную классификацию (для классификационных оценок, которые являются апостериорными вероятностями)
    'quadratic'Квадратичные потери

    'mincost' подходит для классификационных оценок, которые являются апостериорными вероятностями. Для моделей линейной классификации учащиеся логистической регрессии возвращают апостериорные вероятности классификационных оценок как по умолчанию, но ученики SVM этого не делают (см. predict).

  • Чтобы задать пользовательскую функцию потерь, используйте обозначение указателя на функцию. Функция должна иметь следующую форму:

    lossvalue = lossfun(C,S,W,Cost)

    • Выходной аргумент lossvalue является скаляром.

    • Вы задаете имя функции (lossfun).

    • C является n-by- K логическая матрица с строками, указывающими класс, к которому принадлежит соответствующее наблюдение. n количество наблюдений в Tbl или X, и K - количество различных классов (numel(Mdl.ClassNames). Порядок столбцов соответствует порядку классов в Mdl.ClassNames. Создание C путем установки C(p,q) = 1, если наблюдение p находится в q классов, для каждой строки. Установите все другие элементы строки p на 0.

    • S является n-by- K числовая матрица классификационных оценок. Порядок столбцов соответствует порядку классов в Mdl.ClassNames. S является матрицей классификационных оценок, подобной выходным данным predict.

    • W является n-by-1 числовой вектор весов наблюдений.

    • Cost является K-by- K числовая матрица затрат на неправильную классификацию. Для примера, Cost = ones(K) – eye(K) задает стоимость 0 для правильной классификации и 1 для неправильной классификации.

Пример: 'LossFun', @ lossfun

Типы данных: char | string | function_handle

Размерность наблюдения данных предиктора, заданная как 'rows' или 'columns'.

Примечание

Если вы ориентируете матрицу предиктора так, чтобы наблюдения соответствовали столбцам и задавали 'ObservationsIn','columns', тогда вы можете испытать значительное сокращение времени расчета. Вы не можете задать 'ObservationsIn','columns' для данных предиктора в таблице.

Типы данных: char | string

Веса наблюдений, заданные как разделенная разделенными запятой парами, состоящая из 'Weights' и числовой вектор или имя переменной в Tbl.

  • Если вы задаете Weights в виде числового вектора, затем размера Weights должно быть равно количеству наблюдений в X или Tbl.

  • Если вы задаете Weights как имя переменной в Tbl, тогда имя должно быть вектором символов или строковым скаляром. Для примера, если веса сохранены как Tbl.W, затем задайте Weights как 'W'. В противном случае программное обеспечение обрабатывает все столбцы Tbl, включая Tbl.W, как предикторы.

Если вы поставляете веса, то для каждой силы регуляризации, loss вычисляет взвешенные классификационные потери и нормализует веса до значения предыдущей вероятности в соответствующем классе.

Типы данных: double | single

Выходные аргументы

расширить все

Классификационные потери, возвращенные в виде числа или вектора-строки. Толкование L зависит от Weights и LossFun.

L - тот же размер, что и Mdl.Lambda. L (j) - классификационные потери линейной классификационной модели, обученной с использованием регуляризационной прочности Mdl.Lambda (j).

Примеры

расширить все

Загрузите набор данных NLP.

load nlpdata

X является разреженной матрицей данных предиктора, и Y является категориальным вектором меток классов. В данных более двух классов.

Модели должны определять, получено ли количество слов на веб-странице из документации Statistics and Machine Learning Toolbox™. Итак, идентифицируйте метки, которые соответствуют веб-страницам документации Statistics and Machine Learning Toolbox™.

Ystats = Y == 'stats';

Обучите двоичную, линейную модель классификации, которая может идентифицировать, является ли слово счетчиком на веб-странице документации из документации Statistics and Machine Learning Toolbox™. Задайте, чтобы задержать 30% наблюдений. Оптимизируйте целевую функцию с помощью SpaRSA.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30);
CMdl = CVMdl.Trained{1};

CVMdl является ClassificationPartitionedLinear модель. Оно содержит свойство Trained, который является массивом ячеек 1 на 1, содержащим ClassificationLinear Модель, что программное обеспечение обучалось с использованием набора обучающих данных.

Извлеките обучающие и тестовые данные из определения раздела.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Оцените ошибку классификации обучающей и тестовой выборки.

ceTrain = loss(CMdl,X(trainIdx,:),Ystats(trainIdx))
ceTrain = 1.3572e-04
ceTest = loss(CMdl,X(testIdx,:),Ystats(testIdx))
ceTest = 5.2804e-04

Потому что есть одна сила регуляризации в CMdl, ceTrain и ceTest являются числовыми скалярами.

Загрузите набор данных NLP. Предварительно обработайте данные как в Estimate Test-Sample Classification Loss, и транспонируйте данные предиктора.

load nlpdata
Ystats = Y == 'stats';
X = X';

Обучите двоичную, линейную модель классификации. Задайте, чтобы задержать 30% наблюдений. Оптимизируйте целевую функцию с помощью SpaRSA. Задайте, что наблюдения предиктора соответствуют столбцам.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30,...
    'ObservationsIn','columns');
CMdl = CVMdl.Trained{1};

CVMdl является ClassificationPartitionedLinear модель. Оно содержит свойство Trained, который является массивом ячеек 1 на 1, содержащим ClassificationLinear Модель, что программное обеспечение обучалось с использованием набора обучающих данных.

Извлеките обучающие и тестовые данные из определения раздела.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Создайте анонимную функцию, которая измеряет линейные потери, то есть

L=j-wjyjfjjwj.

wj - вес для наблюдения j, yj является ответом j (-1 для отрицательного класса и 1 в противном случае), и fj - необработанная классификационная оценка наблюдения j. Пользовательские функции потерь должны быть записаны в конкретную форму. Правила записи пользовательской функции потерь см. в LossFun аргумент пары "имя-значение".

linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);

Оцените потери классификации обучающей и тестовой выборки с помощью функции линейных потерь.

ceTrain = loss(CMdl,X(:,trainIdx),Ystats(trainIdx),'LossFun',linearloss,...
    'ObservationsIn','columns')
ceTrain = -7.8330
ceTest = loss(CMdl,X(:,testIdx),Ystats(testIdx),'LossFun',linearloss,...
    'ObservationsIn','columns')
ceTest = -7.7383

Чтобы определить хорошую силу лассо-штрафа для линейной классификационной модели, которая использует учителя логистической регрессии, сравните частоты ошибок классификации тестовой выборки.

Загрузите набор данных NLP. Предварительно обработайте данные как в «Задать пользовательские классификационные потери».

load nlpdata
Ystats = Y == 'stats';
X = X'; 

rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Создайте набор из 11 логарифмически разнесенных сильных сторон регуляризации 10-6 через 10-0.5.

Lambda = logspace(-6,-0.5,11);

Обучите двоичные, линейные модели классификации, которые используют каждую из сильных сторон регуляризации. Оптимизируйте целевую функцию с помощью SpaRSA. Уменьшите допуск на градиент целевой функции, чтобы 1e-8.

CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'


  Properties, Methods

Извлеките обученную модель линейной классификации.

Mdl = CVMdl.Trained{1}
Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [1x11 double]
            Lambda: [1x11 double]
           Learner: 'logistic'


  Properties, Methods

Mdl является ClassificationLinear объект модели. Потому что Lambda последовательность регуляризационных сильных сторон, вы можете думать о Mdl как 11 моделей, по одной на каждую силу регуляризации в Lambda.

Оцените ошибку классификации тестовой выборки.

ce = loss(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns');

Потому что существует 11 сильных сторон регуляризации, ce является вектором классификационных ошибок 1 на 11.

Более высокие значения Lambda привести к разреженности переменной предиктора, которая является хорошим качеством классификатора. Для каждой силы регуляризации обучите линейную модель классификации, используя весь набор данных и те же опции, что и при перекрестной проверке моделей. Определите количество ненулевых коэффициентов на модель.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

На том же рисунке постройте график частот ошибок тестовой выборки и частоты ненулевых коэффициентов для каждой силы регуляризации. Постройте график всех переменных по шкале журнала.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff + 1)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off

Figure contains 2 axes. Axes 1 with title Test-Sample Statistics contains an object of type line. Axes 2 contains an object of type line.

Выберите индекс силы регуляризации, который балансирует переменную разреженности предиктора и низкую ошибку классификации. В этом случае значение между 10-4 кому 10-1 должно быть достаточно.

idxFinal = 7;

Выберите модель из Mdl с выбранной прочностью на регуляризацию.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal является ClassificationLinear модель, содержащая одну силу регуляризации. Чтобы оценить метки для новых наблюдений, передайте MdlFinal и новые данные для predict.

Подробнее о

расширить все

Алгоритмы

По умолчанию веса наблюдений являются предшествующими вероятностями классов. Если вы поставляете веса, используя Weightsзатем программное обеспечение нормализует их, чтобы суммировать предыдущие вероятности в соответствующих классах. Программа использует перенормированные веса, чтобы оценить взвешенные классификационные потери.

Расширенные возможности

Введенный в R2016a