Класс: GeneralizedLinearMixedModel
Обновите обобщенную линейную модель смешанных эффектов
glme
- Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel
объектОбобщенная модель линейных смешанных эффектов, заданная как GeneralizedLinearMixedModel
объект. Для свойств и методов этого объекта смотрите GeneralizedLinearMixedModel
.
ynew
- Новый вектор откликаНовый вектор отклика, заданный как вектор n -на-1 скалярных значений, где n - количество наблюдений, используемых для аппроксимации glme
.
Для i наблюдений с предыдущими весами wip и биномиальный размер ni (когда применимо), значения отклика yi содержащиеся в ynew
может иметь следующие значения.
Распределение | Допустимые значения | Примечания |
---|---|---|
Binomial |
| wip и ni целочисленные значения > 0 |
Poisson |
| wip является целым числом значения > 0 |
Gamma | (0,∞) | wip ≥ 0 |
InverseGaussian | (0,∞) | wip ≥ 0 |
Normal | (–∞,∞) | wip ≥ 0 |
Вы можете получить доступ к свойству предыдущих весов wip использование записи через точку.
glme.ObservationInfo.Weights
Типы данных: single
| double
glmenew
- Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel
объектОбобщенная модель линейных смешанных эффектов, возвращенная как GeneralizedLinearMixedModel
объект. glmenew
является обновленной версией обобщенной линейной модели смешанных эффектов glme
, ссылка на значения в векторе отклика ynew
.
Для свойств и методов этого объекта смотрите GeneralizedLinearMixedModel
.
Загрузите выборочные данные.
load mfr
Эти моделируемые данные получены от производственной компании, которая управляет 50 заводами по всему миру, причем каждый завод выполняет пакетный процесс для создания готового продукта. Компания хочет уменьшить количество дефектов в каждой партии, поэтому разработала новый производственный процесс. Чтобы проверить эффективность нового процесса, компания выбрала 20 своих фабрик наугад для участия в эксперименте: Десять фабрик реализовали новый процесс, а другие десять продолжали запускать старый процесс. На каждом из 20 заводов компания запустила пять партий (в общей сложности 100 партий) и записала следующие данные:
Флаг, указывающий, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждой партии, в часах (time
)
Температура партии, в степенях Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
, B
, или C
) химического вещества, используемого в партии (supplier
)
Количество дефектов в партии (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, от стандарта процесса в 3 часа при 20 степенях Цельсии.
Подбор обобщенной линейной модели смешанных эффектов с помощью newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включите термин случайных эффектов для точки пересечения, сгруппированного по factory
, для расчета различий в качестве, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является логарифмической. Используйте метод Laplace fit, чтобы оценить коэффициенты. Задайте кодировку фиктивной переменной следующим 'effects'
, поэтому фиктивные переменные коэффициенты равны 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной модели линейных смешанных эффектов
где
количество дефектов, наблюдаемых в партии, произведенной заводом-изготовителем во время партии .
- среднее количество дефектов, соответствующих заводу (где ) во время партии (где ).
, , и являются измерениями для каждой переменной, которые соответствуют фабрике во время партии . Для примера, указывает, производится ли партия заводом-изготовителем во время партии использовали новый процесс.
и являются фиктивными переменными, которые используют эффекты (сумма к нулю) кодирования, чтобы указать, является ли компания C
или B
, соответственно, поставила химикаты для партии, произведенной заводом во время партии .
является точка пересечения случайных эффектов для каждого завода который учитывает специфические для завода изменения в качестве.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Использование random
чтобы симулировать новый вектор отклика из подобранной модели.
rng(0,'twister'); % For reproducibility ynew = random(glme);
Измените модель с помощью нового вектора отклика.
glme = refit(glme,ynew)
glme = Generalized linear mixed-effects model fit by ML Model information: Number of observations 100 Fixed effects coefficients 6 Random effects coefficients 20 Covariance parameters 1 Distribution Poisson Link Log FitMethod Laplace Formula: defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory) Model fit statistics: AIC BIC LogLikelihood Deviance 469.24 487.48 -227.62 455.24 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue {'(Intercept)'} 1.5738 0.18674 8.4276 94 4.0158e-13 {'newprocess' } -0.21089 0.2306 -0.91455 94 0.36277 {'time_dev' } -0.13769 0.77477 -0.17772 94 0.85933 {'temp_dev' } 0.24339 0.84657 0.2875 94 0.77436 {'supplier_C' } -0.12102 0.07323 -1.6526 94 0.10175 {'supplier_B' } 0.098254 0.066943 1.4677 94 0.14551 Lower Upper 1.203 1.9445 -0.66875 0.24696 -1.676 1.4006 -1.4375 1.9243 -0.26642 0.024381 -0.034662 0.23117 Random effects covariance parameters: Group: factory (20 Levels) Name1 Name2 Type Estimate {'(Intercept)'} {'(Intercept)'} {'std'} 0.46587 Group: Error Name Estimate {'sqrt(Dispersion)'} 1
Можно использовать refit
и random
для проведения моделируемого теста коэффициента правдоподобия или параметрического загрузочного ремешка.
designMatrix
| fitted
| GeneralizedLinearMixedModel
| residuals
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.